15-388/688 - Practical Data Science: Visualization and Data Exploration

J. Zico Kolter Carnegie Mellon University Fall 2016

Outline

Basics of visualization

Data types and visualization types

Software plotting libraries

Outline

Basics of visualization

Data types and visualization types

Software plotting libraries

Two types of visualization

Data exploration visualization: figuring out what is true

Data presentation visualization: convincing other people it is true

This lecture will mostly be focused on the first, we have a much later lecture (11/28) focused on the second

"Data exploration" is much broader than just visualization (most of the analysis techniques we will cover fit into it)

Importance of visualization

Before you run any analysis, build any machine learning system, etc, always visualize your data

If you can't identify a trend or make a prediction for your dataset, neither will an automated algorithm

This is especially important to keep in mind as you hear stories of "superhuman" performance of AI methods (it is possible, but takes a long time, and is not the norm)

Visualization vs. statistics

Visualization almost always presents a more informative (though less quantitative) view of your data than statistics (the noun, not the field)

[Source: https://twitter.com/JustinMatejka/status/770682771656368128 Credit: @JustinMatejka, @albertocairo]

This is a mathematical property: n data points and m equations to satisfy, with n>m

Outline

Basics of visualization

Data types and visualization types

Software plotting libraries

Data types

Nominal: categorical data, no ordering Example – Pet: {dog, cat, rabbit, ...} Operations: =, \neq

Ordinal: categorical data, with ordering Example – Rating: $\{1,2,3,4,5\}$ Operations: $=, \neq, \ge, \le, >, <$

Interval: numerical data, zero has no fixed meaning Example – Temperature Fahrenheit Operations: $=, \neq, \geq, \leq, >, <, +, -$

Ratio: numerical data, zero has special meaning Example – Temperature Kelvin Operations: $=, \neq, \geq, \leq, >, <, +, -, \div$

Visualization Types

Most discussion of visualization types emphasizes what elements the chart is trying to convey

Instead, we are going to focus on the type and dimensionality of the underlying data

Visualization types (not an exhaustive list):

- 1D: bar chart, pie chart, histogram
- 2D: scatter plot, line plot, box and whisker plot, heatmap
- 3D+: scatter matrix, bubble chart

1D DATA

Bar Chart

Pie Chart

	Data
Nominal	×
Ordinal	×
Interval	×
Ratio	×

Histogram

2D DATA

Scatter plot

Line plot

Box and whiskers

Heatmap (matrix)

	Dim 1	Dim 2
Nominal	~	~
Ordinal	~	~
Interval	×	×
Ratio	×	×

Heatmap (density, or 2D histogram)

	Dim 1	Dim 2
Nominal	×	×
Ordinal	×	×
Interval	~	~
Ratio	~	~

3D+ DATA

3D scatter plot

	Dim 1	Dim 2	Dim 3
Nominal	×	×	×
Ordinal	×	×	×
Interval	×	×	×
Ratio	×	×	×

Scatter plot matrix

Nominal

Ordinal

Interval

Ratio

Bubble plot

Color scatter plot

	Dim 1	Dim 2	Dim 3
Nominal	×	×	~
Ordinal	×	×	~
Interval	~	~	×
Ratio	~	~	×

Outline

Basics of visualization

Data types and visualization types

Software plotting libraries

Matplotlib

Matplotlib is the standard for plotting in Python / Jupyter Notebook

By default, the figures look quite ugly, so a lot of styles and additional libraries have been created to give it a nicer look

It is aimed at generating static plots, not very good for interacting with data (with a few exceptions)

A number of additional libraries provide some level of interactive plot (and static plots), but matplotlib is enough of a standard that we'll use it here

Matplotlib examples

Examples of all previous plots in notebook....