
15-388/688 - Practical Data Science:
Unsupervised learning

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1



Outline

Unsupervised learning

K-means

Pricinple Component Analysis

2



Announcements

Tutorial due on Wednesday (max two late days)

Sent some brief feedback over the weekend (just suggestions, changes 
are optional)

3



Outline

Unsupervised learning

K-means

Pricinple Component Analysis

4



Supervised learning paradigm

5

Training Data Machine learning
algorithm Predictions

𝑥 1 , 𝑦 1

𝑥 2 , 𝑦 2

𝑥 3 , 𝑦 3

⋮

Hypothesis function
𝑦 ' ≈ ℎ 𝑥 '

New example 𝑥	
𝑦 ̂ = ℎ(𝑥)



Unsupervised learning paradigm

6

Training Data Machine learning
algorithm Predictions

𝑥 1

𝑥 2

𝑥 3

⋮

Hypothesis function
? ≈ ℎ 𝑥 '

New example 𝑥	
?= ℎ(𝑥)



Three elements of unsupervised learning

It turns out the virtually all unsupervised learning algorithms can be 
considered in the same manner as supervised learning:

1. Define hypothesis function

2. Define loss function

3. Define how to optimize the loss function

But, what do a hypothesis function and loss function signify in the 
unsupervised setting?

7



Unsupervised learning framework

Input features: 𝑥 ' ∈ ℝ-, 𝑖 = 1,… , 𝑚

Model parameters: 𝜃 ∈ ℝ1

Hypothesis function: ℎ2: ℝ- → ℝ-, approximates input given input, i.e. 
we want 𝑥 ' ≈ ℎ2 𝑥 '

Loss function: ℓ: ℝ-×ℝ- → ℝ+, measures the difference between a 
hypothesis and actual input, e.g.: ℓ ℎ2(𝑥), 𝑥 = ℎ2 𝑥 − 𝑥 2

2

Similar canonical machine learning optimization as before:

minimize2   ∑ ℓ ℎ2 𝑥 ' , 𝑥 '
8

'=1

8



Hypothesis and loss functions

The framework seems odd, what does it mean to have a hypothesis 
function approximate the input?

Can’t we just pick ℎ2 𝑥 = 𝑥?

The goal of unsupervised learning is to pick some restricted class of 
hypothesis functions that extract some kind of structure from the data 
(i.e., one that does not include the identity mapping above)

In this lecture, we’ll consider two different algorithms that both fit the 
framework: k-means and principal component analysis

9



Outline

Unsupervised learning

K-means

Pricinple Component Analysis

10



K-means graphically

The k-means algorithm is easy to visualize: given some collection of data 
points we want to find 𝑘 centers such that all points are close to at least 
one center

11

𝜇 2𝜇 1



K-means in unsupervised framework

Parameters of k-means are the choice of centers 𝜃 = {𝜇 1 ,…𝜇 1 }, 
with 𝜇 ' ∈ ℝ-

Hypothesis function outputs the center closest to a point 𝑥
ℎ2 𝑥 = argmin

;∈{; 1 ,…; > }
𝜇 − 𝑥 2

2

Loss function is squared error between input and hypothesis
ℓ ℎ2(𝑥), 𝑥 = ℎ2 𝑥 − 𝑥 2

2

Optimization problem is thus

minimize
; 1 ,…; >

 ∑ ℎ2 𝑥 ' − 𝑥 '
2
2

8

'=1

12



Optimizing k-means objective

The k-means objective is non-convex (possibility of local optima), and 
does not have a closed form solution, so we resort to an approximate 
method, by repeating the following (Lloyd’s algorithm, or just “k-means”)

1. Assign points to nearest cluster
2. Compute cluster center as mean of all points assigned to it

13

Given: Data set 𝑥 '
'=1,…,8, # clusters 𝑘

Initialize:
𝜇 ? ← Random 𝑥 ' ,  𝑗 = 1,… , 𝑘 

Repeat until convergence:
Compute cluster assignment:

𝑦 ' = argmin
?

𝜇 ? − 𝑥 '
2
2 , 𝑖 = 1,… , 𝑚 

Re-compute means:
𝜇 ? ← Mean 𝑥 ' |𝑦 ' = 𝑗 , 𝑗 = 1,… , 𝑘 



K-means in a few lines of code

Scikit-learn, etc, contains k-means implementations, but again these are 
pretty easy to write

For better implementation, want to check for convergence as well as max 
number of iterations

14

def kmeans(X, k, max_iter=10):
Mu = X[np.random.choice(X.shape[0],k),:]
for i in range(max_iter):

D = (-2*X.dot(Mu.T) + np.sum(X**2,axis=1)[:,None] +
np.sum(Mu**2,axis=1))

C = np.eye(k)[np.argmin(D,axis=1),:]
Mu = C.T.dot(X)/np.sum(C,axis=0)[:,None]

loss = np.linalg.norm(X - Mu[np.argmin(D,axis=1),:])**2
return Mu, C, loss



Convergence of k-means

15



Convergence of k-means

16



Convergence of k-means

17



Possibility of local optima

Since the k-means objective function has local optima, there is the 
chance that we convert to a less-than-ideal local optima

Especially for large/high-dimensional datasets, this is not hypothetical: k-
means will usually converge to a different local optima depending on its 
starting point

18



Convergence of k-means (bad)

19



Convergence of k-means (bad)

20



Convergence of k-means (bad)

21



Addressing poor clusters

Many approaches to address potential poor clustering: e.g. randomly 
initialize many times, take clustering with lowest loss

A common heuristic, k-means++: when initializing means, don’t select 
𝜇 ' randomly from all clusters, instead choose 𝜇 ' sequentially, sampled 
with probability proportion to the minimum squared distance to all other 
centroids

After these centers are initialized, run k-means as normal

22



K-means++

23

Given: Data set 𝑥 '
'=1,…,8, # clusters 𝑘

Initialize:
𝜇 1 ← Random 𝑥 1:8

For 𝑗 = 2,… , 𝑘:
Select new cluster:

𝜇 ? ← Random 𝑥 1:8 , 𝑝 1:8

where probabilities 𝑝 ' given by
𝑝 ' ∝ min

?′<?
𝜇 ?′ − 𝑥 '

2
2



How to select k?

There’s no “right” way to select k (number of clusters): larger k virtually 
always will have lower loss than smaller k, even on a hold out set

Instead, it’s common to look at the loss function as a function of 
increasing k, and stop when things look “good” (lots of other heuristics, 
but they don’t convincingly outperform this)

24



Example on real data

MNIST digit classification data set (used in question for 688 HW4)

60,000 images of digits, each 28x28

25



K-means run on MNIST

Means for k-means run with k=50 on MNIST data

26



Outline

Unsupervised learning

K-means

Pricinple Component Analysis

27



Principal component analysis graphically

Principal component analysis (PCA) looks at “simplifying” the data in 
another manner, by preserving the axes of major variation in the data

28



PCA in unsupervised setting

We’ll assume our data is normalized (each feature has zero mean, unit 
variance, otherwise normalize it)

Hypothesis function: 
ℎ2 𝑥 = 𝑈𝑊𝑥, 𝜃 = 𝑈 ∈ ℝ-×1, 𝑊 ∈ ℝ1×-

i.e., we are “compressing” input by multiplying by a low rank matrix

Loss function: same as for k-means, squared distance
ℓ ℎ2(𝑥), 𝑥 = ℎ2 𝑥 − 𝑥 2

2

Optimization problem:

minimize
H,I

 ∑ 𝑈𝑊𝑥 ' − 𝑥 '
2
2

8

'=1

29



Dimensionality reduction with PCA

One of the standard uses for PCA is to reduce the dimension of the input 
data (indeed, we motivated it this way)

If ℎ2 𝑥 = 𝑈𝑊𝑥, then 𝑊𝑥 ∈ ℝ1 is a “reduced” representation of 𝑥

30

𝑥

𝑊𝑥

𝑈𝑊𝑥



Solving PCA optimization problem

The PCA optimization problem is also not convex, subject to local optima 
if we use e.g. gradient descent

However, amazingly, we can solve this problem exactly using what is 
called a singular value decomposition (all stated without proof)

31

Given: normalized data matrix 𝑋, # of components 𝑘

1. Compute singular value decomposition 𝑈𝑆𝑉 M = 𝑋
where 𝑈 , 𝑉 is orthogonal and 𝑆 is diagonal matrix of 
singular values
2. Return 𝑈 = 𝑉:,1:1𝑆1:1,1:1

−1 , 𝑊 = 𝑉:,1:1
M

3. Loss given by ∑ 𝑆''
2-

'=1+1



Code to solve PCA

PCA is just a few lines of code, but all the actual interesting elements are 
the SVD call, if you’re not familiar with this (which is fine), then there won’t 
be too much insight

32

def pca(X,k):
X0 = (X - np.mean(X, axis=0)) / np.std(X,axis=0) + 1e-8)
U,s,VT = np.linalg.svd(X0, compute_uv=True, full_matrices=False)
loss = np.sum(s[k:]**2)
return VT.T[:,:k]/s[:k], VT.T[:,:k], loss



Dimensionality reduction on MNIST

33



Top 50 principal components for MNIST

Images are reconstructed as linear combination of principal components

34



Reconstructed images, original

35



Reconstructed images, k=2

36



Reconstructed images, k=10

37



Reconstructed images, k=100

38



K-means and PCA in data preparation

Although useful in their own right as unsupervised algorithms, K-means 
and PCA are also useful in data preparation for supervised learning

Dimensionality reduction with PCA:
Run PCA, get 𝑊  matrix
Transform inputs to be 𝑥̃ ' = 𝑊𝑥 '

Radial basis functions with k-means
Run k-means to extract 𝑘 centers, 𝜇 1 ,… , 𝜇 1

Create radial basis function features 𝜙?
' = exp − Q R −; S

2
2

2U2  

39


