
15-388/688 - Practical Data Science:
Relational Data

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

2

Announcements

Lunch hour signup is online, sign up for the dates and we will finalize the
students 24 hours before the date (you can sign up after this, but anyone
signed up 24 hours in advance will have preference)

We will create additional lunches if needed (including on other days)

HW1 due Wednesday at 11:59pm

Students switching 388 to 688, we will handle on Wednesday

Nature of HW, the need to read additional docs, etc

3

Piazza rules

We’ve noticed a large number of posts that either 1) ask a question
already answered by another post or in the assignments writeup, or 2)
post a large block of text and just ask what is wrong with it

My policy on class participation may be aggravating the problem

So with that, a few new rules (I told you there would be changes…)

We will post an updated list of these rules pinned on Piazza, and also
include statistics for the course at monthly intervals

4

Piazza rules

1. Use search function before you post: if you post a question that has
already been asked or is directly included in the problem writeup, this will
count for negative class participation points (only going forward from
11:59pm tonight, not retroactive)

2. If your question is specific to your code, your outputs, or the specific
output you see on Autolab, make it a private post

3. Do not dump large strings of your output as the main content of your
post, the goal of Piazza is not crowdsourced debugging

4. It is ok to ask for help if you don’t understand what an error means, but
make your question private as needed, first try Google, and indicate what
tests you have tried so far to diagnose

5. We are going to change things to make answering questions count for
more credit than asking them

5

Autograding

It’s a bit too easy to dump the hidden test data from into your autolab
output (we originally felt this was ok, but it’s a bit too simple)

So, for HW1 now, and for all future homeworks, we are going to return
less information from the autograding

Some students were finding the feedback too sparse as it was…

So some general advice: write tests for your code! (this means, test on
different problem instances, assert that the functions are returning only
what we ask in the assignment, and add a test for all cases covered in
the specification, even if they don’t appear in the example we provide)

6

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

7

The basic relation (i.e. the table)

The term technical term “relation” can be interchanged with the standard
notion we have of “tabular data,” say an instance of a “Person” relation

8

ID Last Name First Name Role
1 Kolter Zico Instructor
2 Wong Eric TA
3 Eswaran Dhivya TA
4 Dinu Jonathan TA
5 Gates William Student
6 Musk Elon Student

The basic relation (i.e. the table)

The term technical term “relation” can be interchanged with the standard
notion we have of “tabular data,” say an instance of a “Person” relation

Rows are called tuples (or records), represent a single instance of this
relation, and must be unique

9

ID Last Name First Name Role
1 Kolter Zico Instructor
2 Wong Eric TA
3 Eswaran Dhivya TA
4 Dinu Jonathan TA
5 Gates William Student
6 Musk Elon Student

The basic relation (i.e. the table)

The term technical term “relation” can be interchanged with the standard
notion we have of “tabular data,” say an instance of a “Person” relation

Columns are called attributes, specify some element contained by each
of the tuples

10

ID Last Name First Name Role
1 Kolter Zico Instructor
2 Wong Eric TA
3 Eswaran Dhivya TA
4 Dinu Jonathan TA
5 Gates William Student
6 Musk Elon Student

Multiple tables and relations

11

ID Name
1 Instructor
2 TA
3 Student

Person Role
ID Last Name First Name
1 Kolter Zico
2 Wong Eric
3 Eswaran Dhivya
4 Dinu Jonathan
5 Gates William
6 Musk Elon

Role
Instructor
TA
TA
TA
Student
Student

Role ID
1
2
2
2
3
3

Primary keys

Primary key: unique ID for every tuple in a relation (i.e. every row in the
table), each relation must have exactly one primary key

12

ID Name
1 Instructor
2 TA
3 Student

Person Role
ID Last Name First Name
1 Kolter Zico
2 Wong Eric
3 Eswaran Dhivya
4 Dinu Jonathan
5 Gates William
6 Musk Elon

Role ID
1
2
2
2
3
3

Foreign keys

A foreign key is an attribute that points to the primary key of another
relation

If you delete a primary key, need to delete all foreign keys pointing to it

13

ID Name
1 Instructor
2 TA
3 Student

Person Role
ID Last Name First Name
1 Kolter Zico
2 Wong Eric
3 Eswaran Dhivya
4 Dinu Jonathan
5 Gates William
6 Musk Elon

Role ID
1
2
2
2
3
3

Indexes (not indices)

Indexes are created as ways to “quickly” access elements of a table

For example, consider finding people with last name “Gates”: no option
but just scan through the whole dataset: 𝑂 𝑛 operation

14

ID Last Name First Name
1 Kolter Zico
2 Wong Eric
3 Eswaran Dhivya
4 Dinu Jonathan
5 Gates William
6 Musk Elon

Role ID
1
2
2
2
3
3

Think of an index as a separate sorted table containing the indexed
column and the tuple location: searching for value takes 𝑂(log 𝑛) time

In practice, use data structure like a B-tree or several others

Indexes

Location
0
100
200
300
400
500

15

ID Last Name First Name Role ID
1 Kolter Zico 1
2 Wong Eric 2
3 Eswaran Dhivya 2
4 Dinu Jonathan 2
5 Gates William 3
6 Musk Elon 3

Last Name Location
Dinu 300
Eswaran 200
Gates 400
Kolter 0
Musk 600
Wong 100

Person Last Name Index

Indexes

The primary key always has an index associated with it (so you can think
of primary keys themselves as always being a fast way to access data)

Indexes don’t have to be on a single column, can have an index over
multiple columns (with some ordering)

16

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

17

Entity relationships

Several types of inter-table relationships
1. One-to-one
2. (One-to-zero/one)
3. One-to-many (and many-to-one)
4. Many-to-many

These relate one (or more) rows in a table with one (or more) rows in
another table, via a foreign key

Note that these relationships are really between the “entities” that the
tables represent, but we won’t formalize this beyond the basic intuition

18

One-to-many relationship

We have already seen a one-to-many relationship: one role can be
shared by many people, denoted as follows

19

ID Name
1 Instructor
2 TA
3 Student

Person Role
ID Last Name First Name
1 Kolter Zico
2 Wong Eric
3 Eswaran Dhivya
4 Dinu Jonathan
5 Gates William
6 Musk Elon

Role ID
1
2
2
2
3
3

Person Role

One-to-one relationships

In a true one-to-one relationship spanning multiple tables, each row in a
table has exactly one row in another table

Not very common to break these across multiple tables, as you may as
well just add another attribute to an existing table, but it is possible

20

Person
ID Last Name First Name
1 Kolter Zico
2 Wong Eric

Role ID
1
2

Andrew ID
Person ID Andrew ID
1 zkolter
2 ericwong

… …

Person Andrew ID

One-to-zero/one relationships

More common in databases is to find “one-to-zero/one” relationships
broken across multiple tables

Consider adding a “Grades” table to our database: each person can have
at most one tuple in the grades table

Bars and circles denote “mandatory” versus “option” relationships (we
won’t worry about these, just know that there is notation for them)

21

Grades
Person ID HW1 Grade HW2 Grade
5 100 80
6 60 80

Person Grades

Many-to-many relationships

Creating a grades table as done before is a bit cumbersome, because we
need to keep adding columns to the table, null entries if someone doesn’t
do the homework

Alternatively, consider adding two tables, a “homework” table that
represents information about each homework, and an associative table
that links homeworks to people

22

Homework
ID Name 388 Points 688 Points
1 HW 1 65 35
2 HW 2 75 25

Person Homework
Person ID HW ID Score
5 1 100
5 2 80
6 1 60
6 2 80

Associative tables

What is the primary key of this table? What are foreign keys?

Which indexes would you want to create on this table?

23

Person Homework
Person ID HW ID Score
5 1 100
5 2 80
6 1 60
6 2 80

Many-to-many relationships

Setups like this encode many-to-many relationships: each person can
have multiple homeworks, and each homework can be done by multiple
people

We could also write this in terms of relationships specified by the
associative table, but this is not really correct, as it is mixing up the
underlying relationships with how they are stored in a database

24

Person Homework

Person HomeworkPerson Homework

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

25

Pandas

Pandas is a “Data Frame” library in Python, meant for manipulating in-
memory data with row and column labels (as opposed to, e.g., matrices,
that have no row or column labels)

Pandas is not a relational database system, but it contains functions that
mirror some functionality of relational databases

We’re going to cover Pandas in more detail in other portions of the class,
but just discuss basic functionality for now

26

Pandas examples

Create a DataFrame with our Person example:

27

import pandas as pd

df = pd.DataFrame([(1, 'Kolter', 'Zico'),
(2, 'Wong', 'Eric'),
(3, 'Eswaran', 'Dhivya'),
(4, 'Dinu', 'Jonathan'),
(5, 'Gates', 'Bill'),
(6, 'Musk', 'Elon')],
columns=["Person ID", "Last Name", "First Name"])

df.set_index("Person ID", inplace=True)

Viewing a created DataFrame

In Jupyter Notebook, just list the DataFrame as the last line of a cell to
display the contents of the DataFrame

28

Some important notes

As mentioned, Pandas is not a relational data system, in particular it has
no notion of primary keys (but it does have indexes)

Operations in Pandas are typically not in place (that is, they return a new
modified DataFrame, rather than modifying an existing one)

Use the “inplace” flag to make them done in place

If you select a single row or column in a Pandas DataFrame, this
will return a “Series” object, which is like a one-dimensional
DataFrame (it has only an index and corresponding values, not
multiple columns)

29

Some common Pandas commands

We’re going to cover a lot more next lecture in conjunction with
visualization

30

read CSV file into DataFrame
df = pd.read_csv(filename)

get first five rows of DataFrame
df.head()

index into a dataframe
df.loc[rows, columns] and df.iloc[row numbers, column numbers]
df.loc[:, "Last Name"] # Series of all last names
df.loc[:, ["Last Name"]] # DataFrame with one column
df.loc[[1,2], :] # DataFrame with only ids 1,2
df.loc[1,"Last Name"] = "Kilter" # Set an entry in a DataFrame
df.loc[7,:] = ("Moore", "Andrew") # Add a new entry with index=7
df.iloc[0,0] # Index rows and columns by zero-index

SQLite

An actual relational database management system (RDBMS)

Unlike most systems, it is a serverless model, applications directly
connect to a file

Allows for simultaneous connections from many applications to the same
database file (but not quite as much concurrency as client-server
systems)

All operations in SQLite will use SQL (Structured Query Language)
command issued to the database object

You can enforce foreign keys in SQLite, but we won’t bother

31

Creating a database and table

You can create a database and connect using this boilerplate code:

Create a new table:

32

import sqlite3
conn = sqlite3.connect("people.db")
cursor = conn.cursor()

do your stuff

conn.close()

cursor.execute("""
CREATE TABLE role (

id INTEGER PRIMARY KEY,
name TEXT

)""")

Creating a new table and inserting data

Insert data into the table:

Delete items from a table:

Note: if you don’t call commit, you can undo with conn.rollback()

33

cursor.execute("INSERT INTO role VALUES (1, 'Instructor')")
cursor.execute("INSERT INTO role VALUES (2, 'TA')")
cursor.execute("INSERT INTO role VALUES (3, 'Student')")
conn.commit()

cursor.execute("DELETE FROM role WHERE id == 3")
conn.commit()

Querying all data from a table

Read all the rows from a table:

Read table directly into a Pandas DataFrame:

34

for row in cursor.execute('SELECT * FROM role'):
print row

pd.read_sql_query("SELECT * FROM role", conn, index_col="id")

Outline

Overview of relational data

Entity relationships

Pandas and SQLite

Joins

35

Joins

Join operations merge multiple tables into a single relation (can be then
saved as a new table or just directly used)

Four typical types of joins:
1. Inner
2. Left
3. Right
4. Outer

You join two tables on columns from each table, where these
columns specify which rows are kept

36

Example: joining Person and Grades

Consider joining two tables, Person and Grades, on ID / Person ID

37

Person
ID Last Name First Name
1 Kolter Zico
2 Wong Eric
3 Eswaran Dhivya
4 Dinu Jonathan
5 Gates William
6 Musk Elon

Role ID
1
2
2
2
3
3

Grades
Person ID HW1 Grade HW2 Grade
5 100 80
6 60 80
100 100 100

Inner join (usually what you want)

Join two tables where we only return the rows where the two joined
columns contain the same value

Only these two rows have an entry in “Person” and an entry in “Grades”

38

ID Last Name First Name Role ID HW1 Grade HW2 Grade
5 Gates William 3 100 80
6 Musk Elon 3 60 80

Inner join in Pandas/SQLite

In Pandas, you can also join on index using right_index/left_index
parameters

There is also the join call in Pandas, which is a bit more limited (always
assumes right is joined on index, left not on index)

39

Pandas way
df_person = pd.read_sql_query("SELECT * FROM person", conn)
df_grades = pd.read_sql_query("SELECT * FROM grades", conn)
df_person.merge(df_grades, how="inner",

left_on="id", right_on="person_id")

SQLite way
cursor.execute("SELECT * FROM person, grades WHERE

person.id == grades.person_id")

Left joins

Keep all rows of the left table, add entries from right table that match the
corresponding columns

Example: left join Person and Grades on ID, Person ID

40

ID Last Name First Name Role ID HW1 Grade HW2 Grade
1 Kolter Zico 1 NULL NULL
2 Wong Eric 2 NULL NULL
3 Eswaran Dhivya 2 NULL NULL
4 Dinu Jonathan 2 NULL NULL
5 Gates William 3 100 80
6 Musk Elon 3 60 80

Left join in Pandas and SQLite

41

Pandas way
df_person.merge(df_grades, how="left",

left_on="id", right_on="person_id")

SQLite way
cursor.execute("SELECT * FROM person LEFT JOIN grades ON

person.id == grades.person_id")

Right join

Like a left join but with the roles of the tables reversed

42

ID Last Name First Name Role ID HW1 Grade HW2 Grade
5 Gates William 3 100 80
6 Musk Elon 3 60 80
100 NULL NULL NULL 100 100

Pandas way
df_person.merge(df_grades, how=”right",

left_on="id", right_on="person_id")

Not supported in SQLite

Outer join

Return all rows from both left and right join

43

ID Last Name First Name Role ID HW1 Grade HW2 Grade
1 Kolter Zico 1 NULL NULL
2 Wong Eric 2 NULL NULL
3 Eswaran Dhivya 2 NULL NULL
4 Dinu Jonathan 2 NULL NULL
5 Gates William 3 100 80
6 Musk Elon 3 60 80
100 NULL NULL NULL 100 100

Pandas way
df_person.merge(df_grades, how=”outer",

left_on="id", right_on="person_id")

Summary

Basic introduction to relational data: keys, indexes, entity relationships,
and joins

A quick look performing relational operations in Pandas and SQLite

44

