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Announcements

Additional information on tutorial posted to class web page

Tutorial check-in is due this Wednesday (no extensions except for special 
circumstances, but you can use late days, and see tutorial write-up for 
information on grading)

Final tutorial now due on 11/2, you can use max of 2 late days (so 
absolute deadline is 11/4)

Evaluation of other student tutorials due 11/9

You may still switch topics, as long as you can still submit check-in, but 
be warned that we may not be able to provide feedback
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Announcements 10/19

Mid-way class survey was released on piazza: 50% response so far 
(going by HW3 submission counts)

We’ll address this in more detail on Monday

But, we did want to address one very valid point of feedback: the HW 
uses library calls never discussed in class, and a lot of time is spent 
figuring out the APIs (this is the reality of data science, to some extent, 
but we can definitely do better)

To address this, we’re going to have recitation sections for each of the 
HWs from now on, covering libraries used in the HW (more details soon)
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Basic probability and statistics

Thus far, in our discussion of machine learning, we have largely avoided 
any talk of probability

This won’t be the case any longer, understanding and modeling 
probabilities is a crucial component of data science (and machine 
learning)

For the purposes of this course: statistics = probability + data

6



Probability and uncertainty in data science

In many prediction tasks, we never expect to be able to achieve perfect 
accuracy (there is some inherent randomness at the level we can observe 
the data)

In these situations, it is important to understand the uncertainty 
associated with our predictions
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Random variables

A random variable (informally) is a variable whose value is not initial known

Instead, these variables can take on different values (including a possibly 
infinite number), and must take on exactly one of these values, each with 
an associated probability, which all together sum to one

“Weather” takes values sunny, rainy, cloudy, snowy
𝑝 Weather =  sunny = 0.3
𝑝 Weather = rainy = 0.2
…

Slightly different notation for continuous random variables, which we will 
discuss shortly
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Notation for random variables

In this lecture, we use upper case letters, 𝑋# to denote random variables

For a random variable 𝑋# taking values 1,2,3

𝑝 𝑋# = 
0.1
0.5
0.4

represents a set of probabilities for each value that 𝑋# can take on (think 
of this like a dictionary mapping values of 𝑋#) to numbers that sum to one

Conversely, we will use lower case 𝑥# to denote a specific value of 𝑋#
(i.e., for above example 𝑥# ∈ 1,2,3 ), and 𝑝 𝑋# = 𝑥# or just 𝑝 𝑥#
refers to a number (the corresponding entry of 𝑝 𝑋# )
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Examples of probability notation

Given two random variables: 𝑋1 with values in {1,2,3} and 𝑋2 with 
values in 1,2 :

𝑝(𝑋1, 𝑋2) refers to the joint distribution, i.e., a set of 6 possible 
values for each setting of variables, i.e. a dictionary mapping 
1,1 , 1,2 , 2,1 ,… to corresponding probabilities)

𝑝(𝑥1, 𝑥2) is a number: probability that 𝑋1 = 𝑥1 and 𝑋2 = 𝑥2

𝑝(𝑋1, 𝑥2) is a set of 3 values, the probabilities for all values of 𝑋1 for 
the given value 𝑋2 = 𝑥2, i.e., it is a dictionary mapping 0,1,2 to 
numbers (note: not probability distribution, it will not sum to one)

We generally call all of these terms factors (dictionaries mapping 
values to numbers, even if they do not sum to one)
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Operations on probabilities/factors

We can perform operations on probabilities/factors by performing the 
operation on every corresponding value in the probabilities/factors

For example, given three random variables 𝑋1, 𝑋2, 𝑋3:

𝑝 𝑋1, 𝑋2  op  𝑝 𝑋2, 𝑋3

denotes a factor over 𝑋1, 𝑋2, 𝑋3 (i.e., a dictionary over all possible 
combinations of values these three random variables can take), where the 
value for 𝑥1, 𝑥2, 𝑥3 is given by

𝑝 𝑥1, 𝑥2  op  𝑝 𝑥2, 𝑥3
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Conditional probability

The conditional probability 𝑝 𝑋1 𝑋2 (the conditional probability of 𝑋1
given 𝑋2) is defined as

𝑝 𝑋1 𝑋2 = 𝑝 𝑋1, 𝑋2
𝑝 𝑋2

Can also be written 𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑋2)𝑝(𝑋2)

More generally, leads to the chain rule:

𝑝 𝑋1,… , 𝑋) = ∏ 𝑝 𝑋# 𝑋1,…𝑋#−1

)

#=1
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Marginalization

For random variables 𝑋1,𝑋2 with joint distribution 𝑝 𝑋1,𝑋2

𝑝 𝑋1 = ∑ 𝑝 𝑋1,𝑥2

�

-2

= ∑ 𝑝 𝑋1 𝑥2 𝑝 𝑥2

�

-2

Generalizes to joint distributions over multiple random variables

𝑝 𝑋1,… ,𝑋# = ∑ 𝑝 𝑋1,… ,𝑋#,𝑥#+1,… ,𝑥)

�

-/+1,…,-2

For 𝑝 to be a probability distribution, the marginalization over all variables 
must be one

∑ 𝑝 𝑥1,… ,𝑥) = 1
�

-1,…,-2
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Bayes’ rule

A straightforward manipulation of probabilities:

𝑝 𝑋1 𝑋2 = 𝑝 𝑋1, 𝑋2
𝑝 𝑋2

= 𝑝 𝑋2 𝑋1)𝑝(𝑋1)
𝑝 𝑋2

= 𝑝 𝑋2 𝑋1)𝑝(𝑋1)
∑ 𝑝(𝑋2|𝑥1)

�
-1

𝑝 𝑥1

An example: I want to know if I have come with with a rate strain of 
value (occurring in only 1/10,000 people).  There is an “accurate” test for 
the flu (if I have the flu, it will tell me I have 99% of the time, and if I do not 
have it, it will tell me I do not have it 99% of the time).  I go to the doctor 
and test positive.  What is the probability I have the this flu?
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Independence

We say that random variables 𝑋1 and 𝑋2 are (marginally)
independent if their joint distribution is the product of their marginals

𝑝 𝑋1, 𝑋2 = 𝑝 𝑋1 𝑝 𝑋2

Equivalently, can also be stated as the condition that

𝑝 𝑋1 𝑋2) = 𝑝 𝑋1, 𝑋2
𝑝 𝑋2

= 𝑝 𝑋1 𝑝 𝑋2
𝑝 𝑋2

= 𝑝 𝑋1

 
and similarly   𝑝 𝑋2 𝑋1 = 𝑝 𝑋2
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Conditional independence

We say that random variables 𝑋1 and 𝑋2 are conditionally 
independent given 𝑋3, if

𝑝 𝑋1, 𝑋2|𝑋3 = 𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3)

Again, can be equivalently written:

𝑝 𝑋1 𝑋2,X3 = 𝑝 𝑋1, 𝑋2 𝑋3
𝑝 𝑋2 𝑋3

= 𝑝 𝑋1 𝑋3 𝑝 𝑋2 𝑋3) 
𝑝 𝑋2 𝑋3

= 𝑝(𝑋1|𝑋3)

And similarly 𝑝 𝑋2 𝑋1, 𝑋3 = 𝑝 𝑋2 𝑋3

Important: Marginal independence does not imply conditional 
independence or vice versa
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Expectation

The expectation of a random variable is denoted:
𝐄 𝑋 = ∑ 𝑥 ⋅ 𝑝 𝑥

�

-

where we use upper case 𝑋 to emphasize that this is a function of the 
entire random variable (but unlike 𝑝(𝑋) is a number)

Note that this only makes sense when the values that the random variable 
takes on are numerical (i.e., We can’t ask for the expectation of the 
random variable “Weather”)

Also generalizes to conditional expectation:
𝐄 𝑋1|𝑥2 = ∑ 𝑥1 ⋅ 𝑝 𝑥1|𝑥2

�

-1
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Rules of expectation

Expectation of sum is always equal to sum of expectations (even when 
variables are not independent):

𝐄 𝑋1 + 𝑋2 = ∑ 𝑥1 + 𝑥2 𝑝(𝑥1, 𝑥2)
�

-1,-2

                = ∑ 𝑥1 ∑ 𝑝 𝑥1, 𝑥2 + ∑ 𝑥2

�

-2

∑ 𝑝 𝑥1, 𝑥2

�

-1

�

-2

�

-1

                = ∑ 𝑥1𝑝 𝑥1 + ∑ 𝑥2𝑝 𝑥2

�

-2

�

-1

= 𝐄 𝑋1 +  𝐄 𝑋2

If 𝑥1, 𝑥2 independent, expectation of products is product of expectations
𝐄 𝑋1𝑋2 = ∑ 𝑥1𝑥2

�

-1,-2

𝑝 𝑥1, 𝑥2 = ∑ 𝑥1𝑥2

�

-1,-2

𝑝 𝑥1 𝑝 𝑥2

             = ∑ 𝑥1𝑝 𝑥1 ∑ 𝑥2𝑝 𝑥2 =
�

-2

�

-1

𝐄 𝑋1 𝐄 𝑋2
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Variance

Variance of a random variable is the expectation of the variable minus its 
expectation, squared

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 = ∑ 𝑥 − 𝐄 𝑥 2𝑝 𝑥
�

-
           = 𝐄 𝑋2 − 2𝑋𝐄 𝑋 + 𝐄 𝑋 2 = 𝐄 𝑋2 − 𝐄 𝑋 2

Generalizes to covariance between two random variables
𝐂𝐨𝐯 𝑋1, 𝑋2 = 𝐄 𝑋1 − 𝐄 𝑋1 𝑋2 − 𝐄 𝑋2
                  = 𝐄 𝑋1𝑋2 − 𝐄 𝑋1 𝐄[𝑋2]
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Infinite random variables

All the math above works the same for discrete random variables that can 
take on an infinite number of values (for those with some math 
background, I’m talking about countably infinite values here) 

The only difference is that 𝑝(𝑋) (obviously) cannot be specified by an 
explicit dictionary mapping variable values to probabilities, need to specify 
a function that produces probabilities

To be a probability, we still must have ∑ 𝑝 𝑥 = 1�
-

Example:

𝑃 𝑋 = 𝑘 = 1
2

>
, 𝑘 = 1,… , ∞
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Continuous random variables

For random variables taking on continuous values (we’ll only consider 
real-valued distributions), we need some slightly different mechanisms

As with infinite discrete variables, the distribution 𝑝(𝑋) needs to be 
specified as a function: here is referred to as a probability density 
function (PDF) and it must integrate to one ∫ 𝑝 𝑥 𝑑𝑥 = 1�

ℝ

For any interval 𝑎, 𝑏 , we have that 𝑝 𝑎 ≤ 𝑥 ≤ 𝑏 = ∫ 𝑝 𝑥 𝑑𝑥F
G

(with 
similar generalization to multi-dimensional random variables)

Can also be specified by their cumulative distribution function (CDF), 
𝐹 𝑎 = 𝑝 𝑥 ≤ 𝑎 = ∫ 𝑝(𝑥)G

∞
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Bernoulli distribution

A simple distribution over binary {0,1} random variables
𝑝 𝑋 = 1; 𝜙 = 𝜙, 𝑃 𝑋 = 0; 𝜙 = 1 − 𝜙

where 𝜙 ∈ [0,1] is the parameter that governs the distribution 

Expectation is just 𝐄 𝑥 = 𝜙 (but not very common to refer to it this way, 
since this would imply that the {0,1} terms are actual real-valued 
numbers)
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Categorical distribution

This is the discrete distribution we’ve mainly considered so far, a 
distribute over finite discrete elements with each probability specified

Written generically as:
𝑝 𝑋 = 𝑖; 𝜙 = 𝜙#

where 𝜙1,…𝜙> ∈ [0,1] are the parameters of the distribution (the 
probability of each random variable, must sum to one)

Note: we could actually parameterize just using 𝜙1,…𝜙>−1, since this 
would determine the last elements

Unless the actual numerical value of the 𝑖’s are relevant, it doesn’t make 
sense to take expectations of a categorical random variable
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The geometric distribution is an distribution over the positive integers, can 
be viewed as the number of Bernoulli trials needed before we get a “1”

𝑝 𝑋 = 𝑖; 𝜙 = 1 − 𝜙 #−1𝜙, 𝑖 = 1,… , ∞
where 𝜙 ∈ [0,1] is parameter governing distribution (also 𝐄 𝑋 = 1/𝜙)

Note: easy to check that

∑ 𝑝(𝑋 = 𝑖)
∞

#=1
= 𝜙 ∑ 1 − 𝜙 #−1

∞

#=1
= 𝜙 ⋅ 1

1 − 1 − 𝜙 = 1

Geometric distribution

26
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Poisson distribution

Distribution over non-negative integers, popular for modeling number of 
times an event occurs within some interval

𝑃 𝑋 = 𝑖; 𝜆 = 𝜆#𝑒−N

𝑖! , 𝑖 = 0,… , ∞

where 𝜆 ∈ ℝ is parameter governing distribution (also 𝐄 𝑋 = 𝜆)

27
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Distribution over real-valued numbers, empirically the most common 
distribution in all of data science (not in data itself, necessarily, but for 
people applying data science), the standard “bell curve”:

Probability density function:

𝑝 𝑥; 𝜇, 𝜎2 = 1
2𝜋𝜎2 1/2 exp − 𝑥 − 𝜇 2

2𝜎2 ≡ 𝒩 𝑥; 𝜇, 𝜎2

with parameters 𝜇 ∈ ℝ (mean) and 𝜎2 ∈ ℝ+ (variance)

Gaussian distribution

28
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Multivariate Gaussians

The Gaussian distribution is one of the few distributions that generalizes 
nicely to higher dimensions

We’ll discuss this in much more detail when we talk about anomaly 
detection and the mixture of Gaussians model, but for now, just know 
that we can also write a distribution over random vectors 𝑥 ∈ ℝ)

𝑝 𝑥; 𝜇, Σ = 1
2𝜋Σ 1/2 exp − 𝑥 − 𝜇 U Σ−1 𝑥 − 𝜇

where 𝜇 ∈ ℝ) is mean and Σ ∈ ℝ)×) is covariance matrix, and ⋅
denotes the determinant of a matrix
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Laplace distribution

Like a Gaussian but with absolute instead of squared difference, gives the 
distribution (relatively) “heavy tails”

Probability density function:

𝑝 𝑥; 𝜇, 𝑏 = 1
2𝑏 exp − 𝑥 − 𝜇

𝑏
with parameters 𝜇 (mean), 𝑏 (variance is 2𝑏2) 

30
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Exponential distribution

A one-sided Laplace distribution, often used to model arrival times

Probability density function:
𝑝 𝑥; 𝜆 = 𝜆 exp −𝜆𝑥

with parameter 𝜆 ∈ ℝ+ (mean/variance 𝐄 𝑋 = 1/𝜆, 𝐕𝐚𝐫 𝑥 = 1/𝜆2)

31
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Some additional examples

Student’s t distribution – distribution governing estimation of normal 
distribution from finite samples, commonly used in hypothesis testing

𝜒2 (chi-squared) distribution – distribution of Gaussian variable squared, 
also used in hypothesis testing

Cauchy distribution – very heavy tailed distribution, to the point that 
variables have undefined expectation (the associated integral is 
undefined)
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Estimating the parameters of distributions

We’re moving now from probability to statistics

The basic question: given some data 𝑥 1 ,… , 𝑥 X , how do I find a 
distribution that captures this data “well”?

In general (if we can pick from the space of all distributions), this is a hard 
question, but if we pick from a particular parameterized family of 
distributions 𝑝 𝑋; 𝜃 , the question is (at least a little bit) easier

Question becomes: how do I find parameters 𝜃 of this distribution that fit 
the data?
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Maximum likelihood estimation

Given a distribution 𝑝 𝑋; 𝜃 , and a collection of observed (independent) 
data points 𝑥 1 ,… , 𝑥 X , the probability of observing this data is simply

𝑝 𝑥 1 ,… , 𝑥 X ; 𝜃 = ∏ 𝑝 𝑥 # ; 𝜃
X

#=1
 

Basic idea of maximum likelihood estimation (MLE): find the 
parameters that maximize the probability of the observed data

maximize
Z

 ∏ 𝑝 𝑥 # ; 𝜃  ≡  maximize
Z

X

#=1
 ℓ 𝜃 = ∑ log 𝑝 𝑥 # ; 𝜃

X

#=1

where ℓ 𝜃 is called the log likelihood of the data

Seems “obvious”, but there are many other ways of fitting parameters
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Parameter estimation for Bernoulli

Simple example: Bernoulli distribution
𝑝 𝑋 = 1; 𝜙 = 𝜙, 𝑝 𝑋 = 0; 𝜙 = 1 − 𝜙

Given observed data 𝑥 1 ,… , 𝑥 X , the “obvious” answer is:

𝜙 ̂ = #1’s
# Total =

∑ 𝑥 #X
#=1
𝑚

But why is this the case?

Maybe there are other estimates that are just as good, i.e.?

𝜙 =
∑ 𝑥 #X

#=1 + 1
𝑚 + 2
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MLE for Bernoulli

Maximum likelihood solution for Bernoulli given by

maximize
^

 ∏ 𝑝 𝑥 # ; 𝜙
X

#=1
= maximize 

^
∏ 𝜙- / 1 − 𝜙 1−- /
X

#=1

Taking the negative log of the optimization objective (just to be consistent 
with our usual notation of optimization as minimization)

maximize
^

 ℓ 𝜙 = ∑ 𝑥 # log 𝜙 + 1 − 𝑥 # log 1 − 𝜙
X

#=1

Derivative with respect to 𝜙 is given by
𝑑

𝑑𝜙 ℓ 𝜙 = ∑ 𝑥 #

𝜙 − 1 − 𝑥 #

1 − 𝜙 =
∑ 𝑥 #X

#=1
𝜙 −

X

#=1

∑ (1 − 𝑥 # )X
#=1

1 − 𝜙
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MLE for Bernoulli, continued

Setting derivative to zero gives:

∑ 𝑥 #X
#=1

𝜙 −
∑ (1 − 𝑥 # )X

#=1
1 − 𝜙 ≡ 𝑎

𝜙 − 𝑏
1 − 𝜙 = 0

⟹ 1 − 𝜙 𝑎 = 𝜙𝑏

⟹ 𝜙 = 𝑎
𝑎 + 𝑏 =

∑ 𝑥 #X
#=1
𝑚

So, we have shown that the “natural” estimate of 𝜙 actually corresponds 
to the maximum likelihood estimate
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MLE for Gaussian, briefly

For Gaussian distribution
𝑝 𝑥; 𝜇, 𝜎2 = 2𝜋𝜎2 −1/2 exp − 1/2 𝑥 − 𝜇 2/𝜎2

Log likelihood given by:

ℓ 𝜇, 𝜎2 = −𝑚1
2 log 2𝜋𝜎2 − 1

2∑ 𝑥 # − 𝜇 2

𝜎2

X

#=1

Derivatives (see if you can derive these fully):
𝑑

𝑑𝜇 ℓ 𝜇,𝜎2 = − 1
2 ∑ 𝑥 # − 𝜇

𝜎2

X

#=1
= 0 ⟹ 𝜇 = 1

𝑚 ∑ 𝑥 #
X

#=1
𝑑

𝑑𝜎2 ℓ 𝜇,𝜎2 = − 𝑚
2𝜎2 + 1

2 ∑ 𝑥 # − 𝜇 2

𝜎2 2

X

#=1
= 0 ⟹ 𝜎2 = 1

𝑚 ∑ 𝑥 # − 𝜇 2
X

#=1
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Naive Bayes modeling

Naive Bayes is a machine learning algorithm that rests relies heavily on 
probabilistic modeling

But, it is also interpretable according to the three ingredients of a machine 
learning algorithm (hypothesis function, loss, optimization), more on this 
later

Basic idea is that we model input and output as random variables 𝑋 =
𝑋1, 𝑋2,… , 𝑋) (several Bernoulli, categorical, or Gaussian random 

variables), and 𝑌 (one Bernoulli or categorical random variable), goal is to 
find 𝑝(𝑌 |𝑋)

41



Naive Bayes assumptions

We’re going to find 𝑝 𝑌 𝑋 via Bayes’ rule

𝑝 𝑌 𝑋 = 𝑝 𝑋 𝑌 𝑝 𝑌
𝑝 𝑋 = 𝑝 𝑋 𝑌 𝑝 𝑌

∑ 𝑝(𝑋|𝑦)�
b 𝑝 𝑦

The denominator is just the sum over all values of 𝑌 of the distribution 
specified by the numeration, so we’re just going to focus on the 
𝑝 𝑋 𝑌 𝑝 𝑌 term

Modeling full distribution 𝑝(𝑋|𝑌 ) for high-dimensional 𝑋 is not practical, 
so we’re going to make the naive Bayes assumption, that the elements 
𝑋# are conditionally independent given 𝑌

𝑝 𝑋 𝑌 = ∏ 𝑝 𝑋# 𝑌
)

#=1
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Modeling individual distributions

We’re going to explicitly model the distribution of each 𝑝 𝑋# 𝑌 as well 
as 𝑝(𝑌 )

We do this by specifying a distribution for 𝑝(𝑌 ) and a separate
distribution and for each 𝑝(𝑋#|𝑌 = 𝑦)

So assuming, for instance, that 𝑌# and 𝑋# are binary (Bernoulli random 
variables), then we would represent the distributions

𝑝 𝑌 ; 𝜙0 , 𝑝 𝑋# 𝑌 = 0; 𝜙#
0), 𝑝 𝑋# 𝑌 = 1; 𝜙#

1

We then estimate the parameters of these distributions using MLE, i.e.

𝜙0 =
∑ 𝑦 dX

d=1
𝑚 , 𝜙#

b =
∑ 𝑥#

d ⋅ 1{𝑦 d = 𝑦}X
d=1

∑ 1{𝑦 d = 𝑦}X
d=1
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Making predictions

Given some new data point 𝑥, we can now compute the probability of 
each class

𝑝 𝑌 = 𝑦 𝑥 ∝ 𝑝 𝑌 = 𝑦 ∏ 𝑝 𝑥# 𝑌 = 𝑦
X

#=1
= 𝜙0 ∏(𝜙#

b)-/ 1 − 𝜙1
b 1−-/

X

#=1

After you have computed the right hand side, just normalize (divide by the 
sum over all 𝑦) to get the desired probability

Alternatively, if you just want to know the most likely 𝑌 , just compute 
each right hand side and take the maximum
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Example
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𝒀 𝑿h 𝑿i

0 0 0
1 1 0
0 0 1
1 1 1
1 1 0
0 1 0
1 0 1
? 1 0

𝑝 𝑌 = 1 =  𝜙0 = 
 
𝑝 𝑋1 = 1 𝑌 = 0 = 𝜙1

0 = 
 
𝑝 𝑋1 = 1 𝑌 = 1 = 𝜙1

1 =
 
𝑝 𝑋2 = 1 𝑌 = 0 = 𝜙2

0 = 
 
𝑝 𝑋2 = 1 𝑌 = 0 = 𝜙2

1 =
 
𝑝 𝑌 𝑋1 = 1,𝑋2 = 0 =



Potential issues

Problem #1: when computing probability, the product p 𝑦 ∏ 𝑝(𝑥#|𝑦))
#=1

quickly goes to zero to numerical precision

Solution: compute log of the probabilities instead

log 𝑝(𝑦) + ∑ log 𝑝 𝑥# 𝑦
)

#=1

Problem #2: If we have never seen either 𝑋# = 1 or 𝑋# = 0 for a given 
𝑦, then the corresponding probabilities computed by MLE will be zero

Solution: Laplace smoothing, “hallucinate” one 𝑋# = 0/1 for each class

𝜙#
b =

∑ 𝑥#
d ⋅ 1{𝑦 d = 𝑦} + 1X

d=1

∑ 1{𝑦 d = 𝑦}X
d=1 + 2
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Other distributions

Though naive Bayes is often presented as “just” counting, the value of the 
maximum likelihood interpretation is that it’s clear how to model 𝑝(𝑋#|𝑌 )
for non-categorical random variables

Example: if 𝑥# is real-valued, we can model 𝑝(𝑋#|𝑌 = 𝑦) as a Gaussian
𝑝 𝑥# 𝑦; 𝜇b, 𝜎b

2 = 𝒩(𝑥#; 𝜇b, 𝜎b
2)

with maximum likelihood estimates

𝜇b = 
∑ 𝑥#

d ⋅ 1{𝑦 d = 𝑦}X
d=1

∑ 1{𝑦 d = 𝑦}X
d=1

, 𝜎b
2 = 

∑ (𝑥#
d −𝜇b)^2 ⋅ 1{𝑦 d = 𝑦}X

d=1

∑ 1{𝑦 d = 𝑦}X
d=1

All probability computations are exactly the same as before (it doesn’t 
matter that some of the terms are probability densities)
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Outline

Probability in data science

Basic rules of probability

Some common distributions

Maximum likelihood estimation

Naive Bayes

Machine learning via maximum likelihood estimation
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Machine learning via maximum likelihood

Many machine learning algorithms (specifically the loss function 
component) can be interpreted probabilistically, as maximum likelihood 
estimation

Recall logistic regression:

minimize
Z

 ∑ ℓlogistic(ℎZ(𝑥 # )
X

#=1
, 𝑦 # )

 
ℓlogistic ℎZ 𝑥 , 𝑦 = log (1 + exp −𝑦 ⋅ ℎZ 𝑥
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Logistic probability model

Consider the model (where 𝑌 is binary taking on −1,+1 values)

𝑝 𝑦 𝑥; 𝜃 = logistic 𝑦 ⋅ ℎZ 𝑥 = 1
1 + exp (−𝑦 ⋅ ℎZ 𝑥 )

Under this model, the maximum likelihood estimate is

maximize
Z

∑ log 𝑝 𝑦 # 𝑥 # ; 𝜃) ≡
X

#=1
minimize

Z
∑ ℓlogistic(ℎZ(𝑥 # )
X

#=1
, 𝑦 # )
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Least squares

In linear regression, assume 
𝑦 = 𝜃U 𝑥 + 𝜖, 𝜖 ∼ 𝒩 0, 𝜎2

⟺ 𝑝 𝑦 𝑥; 𝜃 = 𝒩 𝜃U 𝑥, 𝜎2

Then the maximum likelihood estimate is given by

maximize
Z

∑ log 𝑝 𝑦 # 𝑥 # ; 𝜃) ≡
X

#=1
minimize

Z
∑ 𝑦 # − 𝜃U 𝑥 # 2
X

#=1

i.e., the least-squares loss function can be viewed as MLE under 
Gaussian errors

Other approaches possible too: absolute loss function can be viewed as 
MLE under Laplace errors
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Logistic regression vs. naive Bayes

Although we won’t discuss it much more here, there is a very close 
connection between logistic regression and naive Bayes; for certain 
inputs we can show that both actually use the same hypothesis function

Logistic regression maximizes the conditional log likelihood (called a 
discriminative model)

maximize
Z

∑ log 𝑝 𝑦 # 𝑥 # ; 𝜃)
X

#=1

Naive Bayes maximizes the joint likelihood (called a generative model)

maximize
Z

∑ log 𝑝(𝑦 # , 𝑥 # ; 𝜃)
X

#=1
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