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Probabilistic graphical models

Probabilistic graphical models are all about representing distributions
𝑝 𝑋

where 𝑋 represents some large set of random variables

Example: suppose 𝑋 ∈ 0,1 $ (𝑛-dimensional random variable), would 
take 2$ − 1 parameters to describe the full joint distribution

Graphical models offer a way to represent these same distributions more 
compactly, by exploiting conditional independencies in the distribution

Note: I’m going to use “probabilistic graphical model” and “Bayesian 
network” interchangeably, even though there are differences
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Bayesian networks

A Bayesian network is defined by
1. A directed acyclic graph, 𝐺 = {𝑉 = 𝑋1,… , 𝑋$ , 𝐸}
2. A set of conditional distributions 𝑝 𝑋+ Parents 𝑋+

Defines the joint probability distribution

𝑝 𝑋 = ∏ 𝑝 𝑋+ Parents 𝑋+

$

+=1

Equivalently: each node is conditionally independent of all non-
descendants given its parents
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Example Bayesian network

Conditional independencies let us simply the joint distribution:

𝑝 𝑋1, 𝑋2, 𝑋3, 𝑋4 = 𝑝 𝑋1 𝑝 𝑋2 𝑋1 𝑝 𝑋3 𝑋1, 𝑋2 𝑝 𝑋4 𝑋1, 𝑋2, 𝑋3
 
                        = 𝑝 𝑋1 𝑝 𝑋2 𝑋1)𝑝 𝑋3 𝑋2 𝑝 𝑋4 𝑋3
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24 − 1 = 15
parameters 

(assuming binary 
variables)

1 parameter 2 parameters
7 parameters



Generative model

Can also describe the probabilistic distribution as a sequential “story”, this 
is called a generative model

𝑋1 ∼ Bernoulli 𝜙 1

𝑋2| 𝑋1 = 𝑥1 ∼ Bernoulli 𝜙31

2

𝑋3| 𝑋2 = 𝑥2 ∼ Bernoulli 𝜙32

3

𝑋4| 𝑋3 = 𝑥3 ∼ Bernoulli 𝜙33

3

“First sample 𝑋1 from a Bernoulli distribution with parameter 𝜙 1 , then 
sample 𝑋2 from a Bernoulli distribution with parameter 𝜙31

2 , where 𝑥1 is 
the value we sampled for 𝑋1, then sample 𝑋3 from a Bernoulli …”
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More general generative models

This notion of a “sequential story” (generative model) is extremely 
powerful for describing very general distributions

Naive Bayes:
𝑌 ∼ Bernoulli 𝜙
𝑋+|𝑌 = 𝑦 ∼ Categorical 𝜙9

+

Gaussian mixture model:
𝑍 ∼ Categorical 𝜙
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜇>, Σ>
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More general generative models

Linear regression:
𝑌 |𝑋 = 𝑥 ∼ 𝒩 𝜃A 𝑥, 𝜎2

Changepoint model:
𝑋 ∼ Uniform 0,1

𝑌 |𝑋 = 𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡

Latent Dirichlet Allocation: 𝑀 documents, 𝐾 topics, 𝑁+ words/document
𝜃+ ∼ Dirichlet 𝛼  (topic distributions per document)
𝜙J ∼ Dirichlet 𝛽  (word distributions per topic)
𝑧+,M ∼ Categorical 𝜃+  (topic of 𝑖th word in document)
𝑤+,M ∼ Categorical 𝜙>P,M  (𝑖th word in document)
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The inference problem

Given observations (i.e., knowing the value of some of the variables in a 
model), what is the distribution over the other (hidden) variables?

A relatively “easy” problem if we observe variables at the “beginning” of 
chains in a Bayesian network:

If we observe the value of 𝑋1, then 𝑋2, 𝑋3, 𝑋4 have the same 
distribution as before, just with 𝑋1 “fixed”

But if we observe 𝑋4 what is the distribution over 𝑋1, 𝑋2, 𝑋3?
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Approaches to inference

There are three categories of common approaches to inference (more 
exist, but these are most common)

1. Exact methods: Bayes’ rule or variable elimination methods

2. Approximate variational approaches: approximate distributions over 
hidden variables using “simple” distributions, minimizing the 
difference between these distributions and the true distributions

3. Sampling approaches: draw samples from the the distribution over 
hidden variables, without construction them explicitly
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Exact inference example

Mixture of Gaussians model:

𝑍 ∼ Categorical 𝜙
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜇>, Σ>

Expectation step: compute 𝑝(𝑍|𝑥)

In this case, we can solve inference exactly with Bayes’ rule:

𝑝 𝑍 𝑥 = 𝑝 𝑥 𝑍 𝑝 𝑍
∑ 𝑝 𝑥 𝑧 𝑝 𝑧�

>
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Need for approximate inference

In most cases, the exact distribution over hidden variables cannot be 
computed, would require representing an exponentially large distribution 
over hidden variables (or infinite, in continuous case)

𝑍+ ∼ Bernoulli 𝜙+ , 𝑖 = 1,… , 𝑛
𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜃A 𝑧, 𝜎2

Distribution 𝑃 (𝑍|𝑥) is a full distribution over 𝑛 binary random variables
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Sample-based inference

A naive strategy (rejection sampling): draw samples from the generative 
model until we find one that matches the observed data, distribution over 
other variables will be samples of the hidden variables given observed 
variables 

As we get more complex models, and more observed variables, 
probability that we see our exact observations goes to zero
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Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) refers to a class of methods that 
approximately draw samples from over the hidden variables

The techniques work by iteratively sampling from some of the hidden 
variables (we’ll denote them 𝑍+) conditioned on others (both other hidden 
variables 𝑍+ and observed variables 𝑋)

Gibbs sampling:
Repeat: sample 𝑍+ ∼ 𝑃 (𝑍+|𝑋,𝑍M:M≠+)

Metropolis:
Repeat: sample 𝑍+

′ ∼ 𝑄 𝑍+
′|𝑍+ ,𝑢 ∼ Uniform 0,1

Set:𝑍+ ← 𝑍+
′ if 𝑢 <

𝑄 𝑍+|𝑍+
′ 𝑃 𝑍+

′ 𝑋,𝑍M:M≠+

𝑄 𝑍+
′|𝑍+ 𝑃 𝑍+ 𝑋,𝑍M:M≠+
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Maximum likelihood estimation

Our discussion of probabilistic modeling thus far has maintained a 
separation between variables and parameters

Roughly speaking: variables are the things we take expectations over (or 
sample), and parameters are the things we optimize

E.g. maximum likelihood estimation required that we solve the problem 
(given observed data 𝑥 + ):

maximize
Y

∑ log 𝑝 𝑥 + ; 𝜃
[

+=1
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Bayesian statistics

In Bayesian statistics, everything (including “parameters” 𝜃) is a random 
variable, we write likelihoods now as

𝑝 𝑥 + 𝜃

In order for these probabilities to be well-defined, we need to define prior 
distribution 𝑝 𝜃; 𝛼 on the “parameters” themselves, where 𝛼 are 
hyperparameters (typically fixed and not estimated at all)

Instead of finding a point estimate of 𝜃, in Bayesian statistics we try to 
quantify the distribution of 𝜃|𝑋 (𝜃 given the observed data), called the 
posterior distribution

𝑝 𝜃 𝑋 = 𝑝 𝑋 𝜃 𝑝 𝜃; 𝛼
∫ 𝑝 𝑋 𝜃 𝑝 𝜃; 𝛼 𝑑𝜃
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Bayesian linear regression

Bayesian linear regression model
𝜃 ∼ 𝒩 0, 𝜌𝐼
𝑌 |𝜃, 𝑥 ∼ 𝒩 𝜃A 𝑥, 𝜎2

Without proof, I’ll claim that the posterior distribution is given by
𝜃|𝑥 1:[ , 𝑦 1:[ ∼ 𝒩(𝜇, Σ)
Σ = 𝜌𝐼 + 𝜎2𝑋A 𝑋
𝜇 = 𝜎2Σ−1𝑋A 𝑦

where 𝑋 and 𝑦 and the normal matrix/vector of inputs/outputs

Key point: posterior distribution over 𝜃 is also Gaussian
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Conjugate priors

You may hear this term if you read about Bayesian statistics

All this is saying is the following: suppose
𝜃 ∼ 𝐹 𝛼   (𝐹  is some distribution)
𝑋|𝜃 ∼ 𝐺 𝜃  (𝐺 some other distribution)

Then if 𝐹 is a conjugate prior for 𝐺
𝜃|𝑋 ∼ 𝐹 (𝛼′)

i.e., the posterior has the same type of distribution as the prior

This is quite useful, as it represents just about the only case where we 
can represent the posterior distribution exactly
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Conjugate priors and limitations

Example: Normal distribution is conjugate for mean parameter of Normal 
(see Bayesian linear regression), Inverse Gamma is conjugate for variance 
parameter

Example: Beta distribution is conjugate prior for Bernoulli, Dirichlet is 
conjugate for categorical

In the vast majority of cases, you won’t use exact conjugate priors, 
meaning you can’t come up with a closed form distribution for the 
parameters given the data

Need to resort to approximate inference methods, often sampling
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(Simplified) Bayesian changepoint detection

Changepoint detection:
𝑋 ∼ Uniform 0,1

𝑌 |𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡

Bayesian changepoint detection:
𝑡 ∼ Uniform 0,1
𝜇1, 𝜇2 ∼ 𝒩 0, 𝜈2

𝜎2 ∼ InverseGamma 𝛼, 𝛽

𝑌 |𝑥 ∼ {𝒩 𝜇1, 𝜎2  if 𝑥 < 𝑡
𝒩 𝜇2, 𝜎2  if 𝑥 ≥ 𝑡
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Probabilistic programming

In recent years, there has been substantial effort to “automate” the 
specification of probabilistic models and inference within these models

In probabilistic programming languages, users specify the model similar 
to writing code, specify the observed variables (if any), and then perform 
inference (usually sampling-based) to compute posterior

The PyMC framework (https://pymc-devs.github.io/pymc/) is one such 
language/framework for Python
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(Bayesian) Changepoint detection in PyMC

Model of changepoint detection generative model in PyMC:

Run MCMC to generate samples:
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N = 100
t = pm.Uniform("t", 0, 1)
mu1 = pm.Normal("mu1", 0, 0.1)
mu2 = pm.Normal("mu2", 0, 0.1)
tau = pm.Gamma("tau", 2.0, 1.0)

x = pm.Container([pm.Uniform("x_{}".format(i), 0, 1) for i in range(N)])
y = pm.Container([pm.Normal("y_{}".format(i), 

(x[i]<t)*mu1 + (x[i]>=t)*mu2, tau) 
for i in range(N)])

model = pm.Model([t,mu1,mu2,tau,x,y])

mcmc = pm.MCMC(model)
mcmc.sample(100)



Samples from Generative model
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Adding observations

Suppose we see the following values for x,y

Add observed values in PyMC
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...
x = pm.Container([pm.Uniform("x_{}".format(i), 0, 1, 

observed=True, value=x0[i]) 
for i in range(N)])

y = pm.Container([pm.Normal("y_{}".format(i), 
(x[i]<t)*mu1 + (x[i]>=t)*mu2, tau, 
observed=True, value=y0[i])

for i in range(N)])
...
mcmc.sample(10000, burn=100) # throw away first 100 samples



Posterior distributions
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