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Announcements, 10/10

Tutorial example to be released this evening (apologies, again, for delay)

Class project assignment to be released tonight

We’re going to take a Piazza poll regarding the final project presentation 
during final exam time

On Piazza, try to post follow-ups as much as possible instead of starting 
new posts (counts the same towards class participation)
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Announcements, 10/12

HW 3 due tonight (taking late days will let you submit up until Saturday)

GIS tutorial and final project description posted to web page

Important dates:
10/24: Final project proposals
11/11: Final project midterm report
12/9: Final project reports
12/14: Final project presentations (videos)
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Peak demand vs. temperature (summer months)
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Peak demand vs. temperature (all months)
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Linear regression fit
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“Non-linear” regression

Thus far, we have illustrated linear regression as “drawing a line through 
through the data”, but this was really a function of our input features

Though it may seem limited, linear regression algorithms are quite 
powerful when applied to non-linear features of the input data, e.g.

𝑥 " =
High-Temperature " 2

High-Temperature "

1

Same hypothesis class as before ℎ% 𝑥 = 𝜃' 𝑥, but now prediction will 
be a non-linear function of base input (e.g. a quadratic function)

Same least-squares solution 𝜃 = 𝑋' 𝑋 −1𝑋' 𝑦
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Polynomial features of degree 2

10



Code for fitting polynomial

The only element we need to add to write this non-linear regression is the 
creation of the non-linear features

Output learned function:
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x = df_daily.loc[:,"Temperature"]
min_x, rng_x = (np.min(x), np.max(x) - np.min(x))
x = 2*(x - min_x)/rng_x - 1.0
y = df_daily.loc[:,"Load"]

X = np.vstack([x**i for i in range(poly_degree,-1,-1)]).T
theta = np.linalg.solve(X.T.dot(X), X.T.dot(y))

x0 = 2*(np.linspace(xlim[0], xlim[1],1000) - min_x)/rng_x - 1.0
X0 = np.vstack([x0**i for i in range(poly_degree,-1,-1)]).T
y0 = X0.dot(theta)



Polynomial features of degree 3
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Polynomial features of degree 4
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Polynomial features of degree 10
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Polynomial features of degree 50
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Linear regression with many features

Suppose we have 𝑚 examples in our data set and 𝑛 = 𝑚 features (plus 
assumption that features are linearly independent, though we’ll always 
assume this)

Then 𝑋 ∈ ℝ0×2 is a square matrix, and least squares solution is:
𝜃 = 𝑋' 𝑋 −1𝑋' 𝑌 = 𝑋−1𝑋−' 𝑋' 𝑦 = 𝑋−1𝑦

and we therefore have 𝑋𝜃 = 𝑦 (i.e., we fit data exactly)

Note that we can only perform the above operations when 𝑋 is square, 
though if we have more features than examples, we can still get an exact 
fit by simply discarding features
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Generalization error

The problem we the canonical machine learning problem is that we don’t 
really care about minimizing this objective on the given data set

minimize%   ∑ ℓ ℎ% 𝑥 " , 𝑦 "
0

"=1

What we really care about is how well our function will generalize to new 
examples that we didn’t use to train the system (but which are drawn 
from the “same distribution” as the examples we used for training)

The higher degree polynomials exhibited overfitting: they actually have 
very low loss on the training data, but create functions we don’t expect to 
generalize well
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Cartoon version of overfitting
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As model becomes more complex, training loss always decreases; 
generalization loss decreases to a point, then starts to increase

Loss

Model Complexity

Training
Generalization



Cross-validation

Although it is difficult to quantify the true generalization error (i.e., the error 
of these algorithms over the complete distribution of possible examples), 
we can approximate it by holdout cross-validation

Basic idea is to split the data set into a training set and a holdout set

Train the algorithm on the training set and evaluate on the holdout set

20

Holdout / validation 
set (e.g. 30%)Training set (e.g. 70%)

All data



Cross-validation in code

A simple example of holdout cross-validation:
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# compute a random split of the data
np.random.seed(0)
perm = np.random.permutation(len(df_daily))
idx_train = perm[:int(len(perm)*0.7)]
idx_cv = perm[int(len(perm)*0.7):]

# scale features for each split based upon training
xt = df_daily.iloc[idx_train,0]
min_xt, rng_xt = (np.min(xt), np.max(xt) - np.min(xt))
xt = 2*(xt - min_xt)/rng_xt - 1.0
xcv = 2*(df_daily.iloc[idx_cv,0] - min_xt)/rng_xt -1
yt = df_daily.iloc[idx_train,1]
ycv = df_daily.iloc[idx_cv,1]

# compute least squares solution and error on holdout and training
X = np.vstack([xt**i for i in range(poly_degree,-1,-1)]).T
theta = np.linalg.solve(X.T.dot(X), X.T.dot(yt))
err_train = 0.5*np.linalg.norm(X.dot(theta) - yt)**2/len(idx_train)
err_cv = 0.5*np.linalg.norm(Xcv.dot(theta) - ycv)**2/len(idx_cv)



Parameters and hyperparameters

We refer to the 𝜃 variables as the parameters of the machine learning 
algorithm

But there are other quantities that also affect the classifier: degree of 
polynomial, amount of regularization, etc; these are collectively referred to 
as the hyperparameters of the algorithm

Basic idea of cross-validation: use training set to determine the 
parameters, use holdout set to determine the hyperparameters
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Illustrating cross-validation
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Training and cross-validation loss by degree
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Training and cross-validation loss by degree
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K-fold cross-validation

A more involved (but actually slightly more common) version of cross 
validation

Split data set into 𝑘 disjoint subsets (folds); train on 𝑘 − 1 and evaluate 
on remaining fold; repeat 𝑘 times, holding out each fold once

Report average error over all held out folds

26

Fold 1

All data

Fold 2 Fold 𝑘…



Variants

Leave-one-out cross-validation: the limit of k-fold cross-validation, 
where each fold is only a single example (so we are training on all other 
examples, testing on that one example)

[Somewhat surprisingly, for least squares this can be computed more
efficiently than k-fold cross validation, same complexity solving for the 
optimal 𝜃 using matrix equation] 

Stratified cross-validation: keep an approximately equal percentage of 
positive/negative examples (or any other feature), in each fold

Warning: k-fold cross validation is not always better (e.g., in time series 
prediction, you would want to have holdout set all occur after training set)
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Regularization

We have seen that the degree of the polynomial acts as a natural 
measure of the “complexity” of the model, higher degree polynomials are 
more complex (taken to the limit, we fit any finite data set exactly)

But fitting these models also requires extremely large coefficients on these 
polynomials

For 50 degree polynomial, the first few coefficients are
𝜃 = −3.88×106, 7.60×106, 3.94×106, −2.60×107,…

This suggests an alternative way to control model complexity: keep the 
weights small (regularization)
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Regularized loss minimization

This leads us back to the regularized loss minimization problem we saw 
before, but with a bit more context now:

minimize%   ∑ ℓ ℎ% 𝑥 " , 𝑦 "
0

"=1
+ 𝜆

2 𝜃 2
2

This formulation trades off loss on the training set with a penalty on high 
values of the parameters

By varying 𝜆 from zero (no regularization) to infinity (infinite regularization, 
meaning parameters will all be zero), we can sweep out different sets of 
model complexity
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Regularized least squares

For least squares, there is a simple solution to the regularized loss 
minimization problem

minimize%  12 𝑋𝜃 − 𝑦 2
2 + 𝜆

2 𝜃 2
2

Taking gradients by the same rules as before gives:

𝛻%
1
2 𝑋𝜃 − 𝑦 2

2 + 𝜆
2 𝜃 2

2 = 𝑋' 𝑋𝜃 − 𝑦 + 𝜆𝜃

Setting gradient equal to zero leads to the solution
𝑋' 𝑋𝜃 + 𝜆𝜃 = 𝑋' 𝑦 ⟹   𝜃 = 𝑋' 𝑋 + 𝜆𝐼 −1𝑋' 𝑦

Looks just like the normal equations but with an additional 𝜆𝐼 term

31



50 degree polynomial fit
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50 degree polynomial fit – 𝜆 = 1
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Training/cross-validation loss by regularization
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Training/cross-validation loss by regularization
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Notation for more general features

We previously described polynomial features for a single raw input, but if 
our raw input is itself multi-variate, how do we define polynomial features?

Deviating a bit from past notion, for precision here we’re going to use 
𝑥 " ∈ ℝ= to denote the raw inputs, and 𝜙 " ∈ ℝ2 to denote the input 
features we construct (also common to use the notation 𝜙 𝑥 " )

We’ll also drop (𝑖) superscripts, but important to understand we’re 
transforming each feature this way

E.g., for the high temperature:

𝑥 = High-Temperature , 𝜙 =
𝑥2

𝑥
1
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Polynomial features in general

One possibility for higher degree polynomials is to just use an 
independent polynomial over each dimension (here of degree 𝑑)

𝑥 ∈ ℝ= ⟹ 𝜙 = 

𝑥1
A

⋮
𝑥1
⋮

𝑥=
A

⋮
𝑥=
1

∈ ℝ=A+1

But this ignores cross terms between different features, i.e., terms like 
𝑥1𝑥2

2𝑥=
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Polynomial features in general

A better generalization of polynomials is to include all polynomial terms 
between raw inputs up to degree 𝑑

𝑥 ∈ ℝ= ⟹ 𝜙 = ∏ 𝑥"
DE ∶  ∑ 𝑏"

2

"=1
≤ 𝑑

=

"=1
∈ ℝ

=+A
=

Code to generate all polynomial features with degree exactly 𝑑:

Code to generate all polynomial features with degree up to 𝑑
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from itertools import combinations_with_replacement
[np.prod(a) for a in combinations_with_replacement(x, d)]

[np.prod(a) for i in range(d+1) for a in combinations_with_replacement(x,i)]



Code for general polynomials

The following code efficiently (relatively) generates all polynomials up to 
degree 𝑑 for an entire data matrix 𝑋

It is using the same logic as above, but applying it to entire columns of 
the data at a time, and thus only needs one call to 
combinations_with_replacement
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def poly(X,d):
return np.array([reduce(operator.mul, a, np.ones(X.shape[0])) 

for i in range(1,d+1)
for a in combinations_with_replacement(X.T, i)]).T



Radial basis functions (RBFs)

For 𝑥 ∈ ℝ=, select some set of 𝑝 centers, 𝜇 1 ,… , 𝜇 K (we’ll discuss 
shortly how to select these), and create features

𝜙 = exp −
𝑥 − 𝜇 "

2
2

2𝜎2 : 𝑖 = 1,… , 𝑝  ⋃  1
�

�
∈ ℝK+1

Very important: need to normalize columns of 𝑋 (i.e., different features), 
to all be the same range, or distances wont be meaningful

(Hyper)parameters of the features include the choice of the 𝑝 centers, and 
the choice of the bandwidth 𝜎

Choose centers, i.e., to be a uniform grid over input space, can choose 𝜎
e.g. using cross validation (don’t do this, though, more on this shortly)
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Example radial basis function

Example:
𝑥 = High − Temperature , 
 

𝜇 1 = 20 , 𝜇 2 = 25 ,… , 𝜇 16 = 95 , 𝜎 = 10

Leads to features:

𝜙 =
exp (− High-Temperature − 20 2/200)

⋮
exp (− High-Temperature − 95 2/200)

1
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Code for generating RBFs

The following code generates a complete set of RBF features for an entire 
data matrix 𝑋 ∈ ℝ0×= and matrix of centers 𝜇 ∈ ℝK×=

Important “trick” is to efficiently compute distances between all data 
points and all centers
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def rbf(X,mu,sig):
sqdist = (-2*X.dot(mu.T) +

np.sum(X**2,axis=1)[:,None] +
np.sum(mu**2,axis=1)

return np.exp(-sqdist/(2*sig**2))



Difficulties with general features

The challenge with these general non-linear features is that the number of 
potential features grows very quickly in the dimensionality of the raw input

Polynomials: 𝑘-dimensional raw input ⟹ 𝑘 + 𝑑
𝑘 = 𝑂 𝑑= total 

features (for fixed 𝑑)

RBFs: 𝑘-dimensional raw input, uniform grid with 𝑑 centers over each 
dimension ⟹ 𝑑= total features

These quickly become impractical for large feature raw input spaces
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Practical polynomials

Don’t use the full set of all polynomials, for anything but very low 
dimensional input data (say 𝑘 ≤ 4)

Instead, form polynomials only of features where you know that the 
relationship may be important:

E.g. Temperature2 ⋅ Weekday, but not Temperature ⋅ Humidity

For binary raw inputs, no point in every taking powers (𝑥"
2 = 𝑥")

These elements do all require some insight into the problem
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Practical RBFs

Don’t create RBF centers in a grid over your raw input space (your data 
will never cover an entire high-dimensional space, but will lie on a subset)

Instead, pick centers by randomly choosing 𝑝 data points in the training 
set (a bit fancier, run k-means to find centers, which we’ll describe later)

Don’t pick 𝜎 using cross validation

Instead, choose the following (called the median trick)
𝜎 = median 𝜇 " − 𝜇 P

2, 𝑖, 𝑗 = 1,… , 𝑝
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Nonlinear classification

Just like linear regression, the nice thing about using nonlinear features for 
classification is that our algorithms remain exactly the same as before

I.e., for an SVM, we just solve (using gradient descent)

minimize%   ∑max {1 − 𝑦 " ⋅ 𝜃' 𝑥 " , 0}
0

"=1
+ 𝜆

2 𝜃 2
2

Only difference is that 𝑥 " now contains non-linear functions of the input 
data
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Linear SVM on cancer data set
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Polynomial features 𝑑 = 2
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Polynomial features 𝑑 = 3
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Polynomial features 𝑑 = 10
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RBF features

Below, we assume that 𝑋 has been normalized so that each feature lies 
between [−1,+1] (same as we did for polynomial features)

We’re consider to observe how the classifier changes as we change 
different parameters of the RBFs

𝑝 will refer to total number of centers, 𝑑 will refer the number of centers 
along each dimensions, assuming centers form a regular grid (so since 
we have two raw inputs, 𝑝 = 𝑑2)
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RBF features, 𝑑 = 3,𝜎 = 2/𝑑
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RBF features, 𝑑 = 10,𝜎 = 2/𝑑
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RBF features, 𝑑 = 20,𝜎 = 2/𝑑
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Model complexity and bandwidth

We can control model complexity with RBFs in three ways: two of which 
we have already seen

1. Choose number of RBF centers
2. Increase/decrease regularization parameter
3. Increase/decrease bandwidth
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RBF features, 𝑑 = 20,𝜎 = 0.1
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RBF features, 𝑑 = 20,𝜎 = 0.5
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RBF features, 𝑑 = 20,𝜎 = 1.07 (median trick)
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RBFs from data, 𝑝 = 50,𝜎 = median − trick
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A common strategy for evaluating algorithms

1. Divide data set into training and holdout sets

2. Train different algorithms (or a single algorithm with different 
hyperparameter settings) using the training set

3. Evaluate performance of all the algorithms on the holdout set, and 
report the best performance (e.g., lowest holdout error)

What is wrong with this?
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Issues with the previous evaluation

Even though we used a training/holdout split to fit the parameters, we are 
still effectively fitting the hyperparameters to the holdout set

Imagine an algorithm that ignores the training set and makes random 
predictions; given a large enough hyperparameter search (e.g., over 
random seed), we could get perfect holdout performance
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What to do instead

1. Divide data into training set, holdout set, and test set

2. Train algorithm on training set (i.e., to learn parameters), use holdout 
set to select hyperparameters

3. (Optional) retrain system on training + holdout

4. Evaluate performance on test set
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Test set 
(e.g., 30%)

Training set 
(e.g. 50%)

All data

Holdout / validation 
set (e.g. 20%)



In practice…

“Leakage” of test set performance into algorithm design decisions in 
almost always a reality when dealing with any fixed data set (in theory, as 
soon as you look at test set performance once, you have corrupted that 
data as a valid set set)

This is true in research as well as in data science practice

The best solutions: evaluate your system “in the wild” (where it will see 
truly novel examples) as often a possible; recollect data if you suspect 
overfitting to test set; look at test set performance sparingly

An interesting and very active area of research: adaptive data analysis 
(differential privacy to theoretically guarantee no overfitting)
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Classification metrics

So far, we have considered accuracy (0/1 loss) as the primary method for 
evaluating classifiers

However, sometimes the benefits for correctly classifying positive and 
negative examples are different, as are the costs for predictive a positive 
example to be negative, and vice versa

In cancer dataset, it is a very different thing (in terms of real-world effects) 
to predict that an actually malignant tumor is benign, versus predicting a 
benign tumor is malignant
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Confusion matrix

A confusion matrix explicitly lists the number of examples for each actual 
class and each prediction 

Can compute these (and all associated metrics) on training / holdout / 
testing sets, but we’ll just show examples on training sets here
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Predicted
Positive

Predicted
Negative

Actual
Positive True	Positive False Negative

Actual	
Negative False	Positive True	negative

import sklearn.metrics
sklearn.metrics.confusion_matrix(y, clf.predict(X))



Derived quantities

Several common metrics are associated with entries of the confusion 
matrix (TP = true positive, FP = false positive, TN = true negative, TP = 
true negative)

TP Rate also called Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

FP Rate = FP
FP + TN

Precision = TP
TP + FP

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Different metrics (and man others) are standard for different domains

70



Changing the prediction threshold

Classifiers are implicitly trained around a “threshold” of zero (positive 
hypothesis means predict positive, negative means predict negative)

But there is no reason to use only this threshold when we want to make 
predictions (may want to “overpredict” one class or the other)

Key idea: by sorting the hypothesis function outputs, and adjusting the 
threshold at which we call something positive or negative, we can sweep 
out all possible classifications that a classifier can produce
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Example thresholds

Sorted hypothesis function outputs (assume 10 total examples, 5 total 
positive examples):

sorted(ℎ% 𝑥 " ) =
10
9

8.5
⋮

, 𝑦 =
+1
−1
+1
⋮

TP Rate = 0.0, FP Rate = 0.0

TP Rate = 0.2, FP Rate = 0.0

TP Rate = 0.2, FP Rate = 0.2

TP Rate = 0.4, FP Rate = 0.2
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ROC Curve

If we plot the true positive rate versus the false positive rate for this 
procedure, we get a figure known as an ROC (receiver operating 
characteristic) curve
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Precision recall curves

We can perform similar operations for other metrics, to for e.g. a 
precision-recall curve (plot of recall vs. precision as threshold varies)
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