
15-388/688 - Practical Data Science:
Matrices, vectors, and linear algebra

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

2

Announcements

HW 1 solutions to be released today via Piazza – please do not distribute
the solutions or post them publicly

We will also release statistics (histograms) of HW scores

(Absence of) partial credit on homework questions

HW 2 released Wednesday night (but re-download today), will be due a
week from Friday (giving two additional days, since it covers topics from
this Wednesday)

Tutorial to be released today

3

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

4

Vectors

A vector is a 1D array of values

We use the notation 𝑥 ∈ ℝ$ to denote that 𝑥 is an 𝑛-dimensional vector
with real-valued entries

𝑥 =

𝑥1
𝑥2
⋮

𝑥$

We use the notation 𝑥) to denote the ith entry of 𝑥

By default, we consider vectors to represent column vectors, if we want
to consider a row vector, we use the notation 𝑥*

5

Matrices

A matrix is a 2D array of values

We use the notation 𝐴 ∈ ℝ,×$ to denote a real-valued matrix with 𝑚
rows and 𝑛 columns

𝐴 =

𝐴11 𝐴12 ⋯
𝐴21 𝐴22 ⋯

⋮
𝐴,1

⋮
𝐴,2

⋱
⋯

𝐴1$
𝐴2$

⋮
𝐴,$

We use 𝐴)1 to denote the entry in row 𝑖 and column 𝑗

Use the notation 𝐴): to refer to row 𝑖, 𝐴:1 to refer to column 𝑗 (sometimes
we’ll use other notation, but we will define before doing so)

6

Matrices and linear algebra

Matrices are:

1. The “obvious” way to store tabular data (particularly numerical
entries, though categorical data can be encoded too) in an efficient
manner

2. The foundation of linear algebra, how we write down and operate
upon (multi-variate) systems of linear equations

Understanding both these perspectives is critical for virtually all data
science analysis algorithms

7

Matrices as tabular data

Given the “Grades” table from our relation data lecture

Natural to represent this data as a matrix

𝐴 ∈ ℝ3×2 =
100 80
60 80
100 100

8

Person ID HW1 Grade HW2 Grade
5 100 80
6 60 80
100 100 100

Row and column ordering

Matrices can be laid out in memory by row or by column

𝐴 =
100 80
60 80
100 100

Row major ordering: 100, 80, 60, 80, 100, 100

Column major ordering: 100, 60, 100, 80, 80, 100

Row major ordering is default for C 2D arrays (and default for Numpy),
column major is default for FORTRAN (since a lot of numerical methods
are written in FORTRAN, also the standard for most numerical code)

9

Higher dimensional matrices

From a data storage standpoint, it is easy to generalize 1D vector and 2D
matrices to higher dimensional ND storage

“Higher dimensional matrices” are called tensors

There is also an extension or linear algebra to tensors, but be aware:
most tensor use cases you see are not really talking about true tensors in
the linear algebra sense

10

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

11

Systems of linear equations

Matrices and vectors also provide a way to express and analyze systems
of linear equations

Consider two linear equations, two unknowns
 4𝑥1 − 5𝑥2 =
−2𝑥1 + 3𝑥2 = −13

9

We can write this using matrix notation as

𝐴𝑥 = 𝑏
𝐴 = 4 −5

−2 3 , 𝑏 = −13
9 , 𝑥 = 𝑥1

𝑥2

12

Basic matrix operations

For 𝐴, 𝐵 ∈ ℝ,×$, matrix addition/subtraction is just the elementwise
addition or subtraction of entries

𝐶 ∈ ℝ,×$ = 𝐴 + 𝐵 ⟺ 𝐶)1 = 𝐴)1 + 𝐵)1

For 𝐴 ∈ ℝ,×$, transpose is an operator that “flips” rows and columns
𝐶 ∈ ℝ$×, = 𝐴* ⟺ 𝐶1) = 𝐴)1

For 𝐴 ∈ ℝ,×$, 𝐵 ∈ ℝ$×; matrix multiplication is defined as

𝐶 ∈ ℝ,×; = 𝐴𝐵 ⟺ 𝐶)1 = ∑ 𝐴)=𝐵=1

$

==1
Matrix multiplication is associative (𝐴 𝐵𝐶 = 𝐴𝐵 𝐶), distributive
(𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶), not commutative (𝐴𝐵 ≠ 𝐵𝐴)

13

Matrix inverse

The identity matrix 𝐼 ∈ ℝ$×$ is a square matrix with ones on diagonal
and zeros elsewhere, has property that for 𝐴 ∈ ℝ,×$

𝐴𝐼 = 𝐼𝐴 = 𝐴 (for different sized 𝐼)

For a square matrix 𝐴 ∈ ℝ$×$, matrix inverse 𝐴−1 ∈ ℝ$×$ is the matrix
such that

𝐴𝐴−1 = 𝐼 = 𝐴−1𝐴

Recall our previous system of linear equations 𝐴𝑥 = 𝑏, solution is easily
written using the inverse

𝑥 = 𝐴−1𝑏

Inverse need not exist for all matrices (conditions on linear independence
of rows/columns of 𝐴), we will consider such possibilities later

14

Some miscellaneous definitions/properties

Transpose of matrix multiplication, 𝐴 ∈ ℝ,×$, 𝐵 ∈ ℝ$×;

𝐴𝐵 * = 𝐵* 𝐴*

Inverse of product, 𝐴 ∈ ℝ$×$, 𝐵 ∈ ℝ$×$ both square and invertible
𝐴𝐵 −1 = 𝐵−1𝐴−1

Inner product: for 𝑥, 𝑦 ∈ ℝ$, special case of matrix multiplication

𝑥* 𝑦 ∈ ℝ = ∑ 𝑥)𝑦)

$

)=1

Vector norms: for 𝑥 ∈ ℝ$, we use 𝑥 2 to denote Euclidean norm
𝑥 2 = 𝑥* 𝑥

1
2

15

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

16

Software for linear algebra

Linear algebra computations underlie virtually all machine learning and
statistical algorithms

There have been massive efforts to write extremely fast linear algebra
code: don’t try to write it yourself!

Example: matrix multiply, for large matrices, specialized code will be ~10x
faster than this “obvious” algorithm

17

void matmul(double **A, double **B, double **C, int m, int n, int p) {
for (int i = 0; i < m; i++) {

for (int j = 0; j < p; j++) {
C[i][j] = 0.0;
for (int k = 0; k < n; k++)

A[i][j] += A[i][k] * B[k][j];
}

}
}

Numpy

In Python, the standard library for matrices, vectors, and linear algebra is
Numpy

Numpy provides both a framework for storing tabular data as
multidimensional arrays and linear algebra routines

Important note: numpy ndarrays are multi-dimensional arrays, not
matrices and vectors (there are just routines that support them acting like
matrices or vectors)

18

Specialized libraries

BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra
PACKage) provide general interfaces for basic matrix multiplication (BLAS)
and fancier linear algebra methods (LAPACK)

Highly optimized version of these libraries: ATLAS, OpenBLAS, Intel MKL

Anaconda typically uses a reasonably optimized version of Numpy that
uses one of these libraries on the back end, but you should check

19

import numpy as np
print np.__config__.show() # print information on underlying libraries

Creating Numpy arrays

Creating 1D and 2D arrays in Numpy

20

b = np.array([-13,9]) # 1D array construction
A = np.array([[4,-5], [-2,3]]) # 2D array contruction

b = np.ones(4) # 1D array of ones
b = np.zeros(4) # 1D array of zeros
b = np.random.randn(4) # 1D array of random normal entries

A = np.ones((5,4)) # 2D array of all ones
A = np.zeros((5,4)) # 2D array of zeros
A = np.random.randn(5,4) # 2D array with random normal entries

I = np.eye(5) # 2D identity matrix (2D array)
D = np.diag(np.random(5)) # 2D diagonal matrix (2D array)

Indexing into Numpy arrays

Arrays can be indexed by integers (to access specific element, row), or by
slices, integer arrays, or Boolean arrays (to return subset of array)

21

A[0,0] # select single entry
A[0,:] # select entire column
A[0:3,1] # slice indexing

integer indexing
idx_int = np.array([0,1,2])
A[idx,3]

boolean indexing
idx_bool = np.array([True, True, True, False, False])
A[idx,3]

fancy indexing on two dimensions
idx_bool2 = np.array([True, False, True, True])
A[idx_bool, idx_bool2] # not what you want
A[idx_bool,:][:,idx_bool2] # what you want

Basic operations on arrays

Arrays can be added/subtracted, multiply/divided, and transposed, but
these are not the same as matrix operations

22

A = np.random.randn(5,4)
B = np.random.randn(5,4)
x = np.random.randn(4)
y = np.random.randn(5)

A+B # matrix addition
A-B # matrix subtraction

A*B # ELEMENTWISE multiplication
A/B # ELEMENTWISE division
A*x # multiply columns by x
A*y[:,None] # multiply rows by y (look this one up)

A.T # transpose (just changes row/column ordering)
x.T # does nothing (can't transpose 1D array)

Basic matrix operations

Matrix multiplication can be done using the .dot() function, special
meaning for multiplying 1D-1D, 1D-2D, 2D-1D, 2D-2D arrays

There is also an np.matrix class … don’t use it
23

A = np.random.randn(5,4)
C = np.random.randn(4,3)
x = np.random.randn(4)
y = np.random.randn(5)
z = np.random.randn(4)

A.dot(C) # matrix-matrix multiply (returns 2D array)
A.dot(x) # matrix-vector multiply (returns 1D array)
x.dot(z) # inner product (scalar)

A.T.dot(y) # matrix-vector multiply
y.T.dot(A) # same as above
y.dot(A) # same as above
#A.dot(y) # would throw error

Solving linear systems

Methods for inverting a matrix, solving linear systems

Important, always prefer to solve a linear system over directly forming the
inverse and multiplying (more stable and cheaper computationally)

Details: solution methods use a factorization (e.g., LU factorization),
which is cheaper than forming inverse

24

b = np.array([-13,9])
A = np.array([[4,-5], [-2,3]])

np.linalg.inv(A) # explicitly form inverse
np.linalg.solve(A, b) # A^(-1)*b, more efficient and numerically stable

Outline

Matrices and vectors

Basics of linear algebra

Libraries for matrices and vectors

Sparse matrices

25

Sparse matrices

Many matrices are sparse (contain mostly zero entries, with only a few
non-zero entries)

Examples: matrices formed by real-world graphs, document-word count
matrices (more on both of these later)

Storing all these zeros in a standard matrix format can be a huge waste of
computation and memory

Sparse matrix libraries provide an efficient means for handling these
sparse matrices, storing and operating only on non-zero entries

Note: this is important from the first (storage-based) perspective of
matrices, the linear algebra is the same (mostly)

26

Coordinate format

There are several different ways of storing sparse matrices, each
optimized for different operations

Coordinate (COO) format: store each entry as a tuple
(row-index, col-index, value)

Important: these could be placed in any order

A good format for constructing sparse matrices

27

𝐴 =
0 0
2 0
0 1
4 0

3 0
0 1
0 0
1 0

data = [2 4 1 3 1 1]
row-indices = 1 3 2 0 3 1
col-indices = [0 0 1 2 2 3]

Compressed sparse column format

Compressed sparse column (CSC) format

Ordering is important (always column-major ordering)

Faster for matrix multiplication, easier to access individual columns

Very bad for modifying a matrix, to add one entry need to shift all data

28

𝐴 =
0 0
2 0
0 1
4 0

3 0
0 1
0 0
1 0

data = [2 4 1 3 1 1]
row-indices = 1 3 2 0 3 1
col-indices = [0 0 1 2 2 3]

col-indices = [0 2 3 5 6]

⟹

Sparse matrix libraries

Need specialized libraries for handling matrix operations
(multiplication/solving equations) for sparse matrices

General rule of thumb (very adhoc): if your data is 80% sparse or more,
it’s probably worthwhile to use sparse matrices for multiplication, if it’s
95% sparse or more, probably worthwhile for solving linear systems)

The scipy.sparse module provides routines for constructing sparse
matrices in different formats, converting between them, and matrix
operations

29

import scipy.sparse as sp
A = sp.coo_matrix((data, (row_idx, col_idx)), size)
B = A.tocsc()
C = A.todense()

