
15-388/688 - Practical Data Science:
Big data and MapReduce

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

2

Announcements

HW6 released over the weekend, will be due one week from Sunday
(deadline pushed back a couple days to account for late posting)

Recitation for homework will be tomorrow (time/place TBD)

Remember: 1/3 questions for 388, 2/3 for 688 (can do an additional
problem for ½ points extra credit)

Project feedback available in a few days (I’m a bit behind on these, sorry)

Tutorial grades also available soon (see above)

3

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

4

“Big data”

5

My laptop
8GB RAM

500GB Disk

Big data?
No

Google Data Center
??? RAM/Disk

(>> PBs)

Big data?
Yes

?

Some notable inflection points

1. Your data fits in RAM on a single machine

2. Your data fits on disk on a single machine

3. Your data fits in RAM/disk on a “small” cluster of machines (you don’t
need to worry about machines dying)

4. Your data fits in RAM/disk on a “large” cluster of machine (you need
to worry about machines dying)

It’s probably reasonable to refer to 3+ as “big data”, but many would only
consider 4

6

Do you have big data?

If your data fits on a single machine (even on disk), then it’s almost always
better to think about how you can design an efficient single-machine
solution, unless you have extremely good reasons for doing otherwise

7

name twitter rv [11] uk-2007-05 [4]
nodes 41,652,230 105,896,555
edges 1,468,365,182 3,738,733,648
size 5.76GB 14.72GB

Table 1: The “twitter rv” and “uk-2007-05” graphs.

fn PageRank20(graph: GraphIterator, alpha: f32) {
let mut a = Vec::from_elem(graph.nodes, 0f32);
let mut b = Vec::from_elem(graph.nodes, 0f32);
let mut d = Vec::from_elem(graph.nodes, 0u32);

graph.map_edges(|x, y| { d[x] += 1; });

for iter in range(0u, 20u) {
for i in range(0u, graph.nodes) {

b[i] = alpha * a[i] / d[i];
a[i] = 1f32 - alpha;

}

graph.map_edges(|x, y| { a[y] += b[x]; });
}

}

Figure 2: Twenty PageRank iterations.

2 Basic Graph Computations
Graph computation has featured prominently in recent
SOSP and OSDI conferences, and represents one of the
simplest classes of data-parallel computation that is not
trivially parallelized. Conveniently, Gonzalez et al. [8]
evaluated the latest versions of several graph-processing
systems in 2014. We implement each of their tasks using
single-threaded C# code, and evaluate the implementa-
tions on the same datasets they use (see Table 1).1

Our single-threaded implementations use a simple
Boost-like graph traversal pattern. A GraphIterator
type accepts actions on edges, and maps the action across
all graph edges. The implementation uses unbuffered IO
to read binary edge data from SSD and maintains per-
node state in memory backed by large pages (2MB).

2.1 PageRank
PageRank is an computation on directed graphs which it-
eratively updates a rank maintained for each vertex [16].
In each iteration a vertex’s rank is uniformly divided
among its outgoing neighbors, and then set to be the ac-
cumulation of scaled rank from incoming neighbors. A
dampening factor alpha is applied to the ranks, the lost
rank distributed uniformly among all nodes. Figure 2
presents code for twenty PageRank iterations.

1Our C# implementations required some manual in-lining, and are
less terse than our Rust implementations. In the interest of clarity, we
present the latter in this paper. Both versions of the code produce com-
parable results, and will be made available online.

scalable system cores twitter uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 1235s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

fn LabelPropagation(graph: GraphIterator) {
let mut label = Vec::from_fn(graph.nodes, |x| x);
let mut done = false;

while !done {
done = true;
graph.map_edges(|x, y| {

if label[x] != label[y] {
done = false;
label[x] = min(label[x], label[y]);
label[y] = min(label[x], label[y]);

}
});

}
}

Figure 3: Label propagation.

Table 2 compares the reported times from several
systems against a single-threaded implementations of
PageRank, reading the data either from SSD or from
RAM. Other than GraphChi and X-Stream, which re-
read edge data from disk, all systems partition the graph
data among machines and load it in to memory. Other
than GraphLab and GraphX, systems partition edges by
source vertex; GraphLab and GraphX use more sophisti-
cated partitioning schemes to reduce communication.

No scalable system in Table 2 consistently out-
performs a single thread, even when the single thread
repeatedly re-reads the data from external storage. Only
GraphLab and GraphX outperform any single-threaded
executions, although we will see in Section 3.1 that the
single-threaded implementation outperforms these sys-
tems once it re-orders edges in a manner akin to the par-
titioning schemes these systems use.

2.2 Connected Components
The connected components of an undirected graph are
disjoint sets of vertices such that all vertices within a set

2

Tables from [McSherry et al., 2015 “Scalability! But at what COST”]

scalable system cores twitter uk-2007-05
Stratosphere [6] 16 950s -
X-Stream [17] 16 1159s -
Spark [8] 128 1784s � 8000s
Giraph [8] 128 200s � 8000s
GraphLab [8] 128 242s 714s
GraphX [8] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

are mutually reachable from each other.
In the distributed setting, the most common algorithm

for computing connectivity is label propagation [9] (Fig-
ure 3). In label propagation, each vertex maintains a label
(initially its own ID), and iteratively updates its label to
be the minimum of all its neighbors’ labels and its cur-
rent label. The process propagates the smallest label in
each component to all vertices in the component, and the
iteration converges once this happens in every compo-
nent. The updates are commutative and associative, and
consequently admit a scalable implementation [5].

Table 3 compares the reported running times of la-
bel propagation on several data-parallel systems with a
single-threaded implementation reading from SSD. De-
spite using orders of magnitude less hardware, single-
threaded label propagation is significantly faster than any
system above.

3 Better Baselines
The single-threaded implementations we have presented
were chosen to be the simplest, most direct implementa-
tions we could think of. There are several standard ways
to improve them, yielding single-threaded implementa-
tions which strictly dominate the reported performance
of the systems we have considered, in some cases by an
additional order of magnitude.

3.1 Improving graph layout
Our single-threaded algorithms take as inputs edge itera-
tors, and while they have no requirements on the order in
which edges are presented, the order does affect perfor-
mance. Up to this point, our single-threaded implemen-
tations have enumerated edges in vertex order, whereby
all edges for one vertex are presented before moving
on to the next vertex. Both GraphLab and GraphX in-
stead partition the edges among workers, without requir-
ing that all edges from a single vertex belong to the same

scalable system cores twitter uk-2007-05
GraphLab 128 249s 833s
GraphX 128 419s 462s
Vertex order (SSD) 1 300s 651s
Vertex order (RAM) 1 275s -
Hilbert order (SSD) 1 242s 256s
Hilbert order (RAM) 1 110s -

Table 4: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
The single-threaded times use identical algorithms,
but with different edge orders.

worker, which enables those systems to exchange less
data [7, 8].

A single-threaded graph algorithm does not perform
explicit communication, but edge ordering can have a
pronounced effect on the cache behavior. For example,
the edge ordering described by a Hilbert curve [2], akin
to ordering edges (a,b) by the interleaving of the bits
of a and b, exhibits locality in both a and b rather than
just a as in the vertex ordering. Table 4 compares the
running times of single-threaded PageRank with edges
presented in Hilbert curve order against other implemen-
tations, where we see that it improves over all of them.

Converting the graph data to a Hilbert curve order is an
additional cost in pre-processing the graph. The process
amounts to transforming pairs of node identifiers (edges)
into an integer of twice as many bits, sorting these values,
and then transforming back to pairs of node identifiers.
Our implementation transforms the twitter rv graph in
179 seconds using one thread, which can be a perfor-
mance win even if pre-processing is counted against the
running time.

3.2 Improving algorithms
The problem of properly choosing a good algorithm lies
at the heart of computer science. The label propagation
algorithm is used for graph connectivity not because it
is a good algorithm, but because it fits within the “think
like a vertex” computational model [13], whose imple-
mentations scale well. Unfortunately, in this case (and
many others) the appealing scaling properties are largely
due to the algorithm’s sub-optimality; label propagation
simply does more work than better algorithms.

Consider the algorithmic alternative of Union-Find
with weighted union [3], a simple O(m logn) algorithm
which scans the graph edges once and maintains two in-
tegers for each graph vertex, as presented in Figure 4.
Table 5 reports its performance compared with imple-

3

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

8

Distributed computing

Distributed computing rose to prominence in the 70s/80s, often built
around “supercomputing,” for scientific computing applications

9

1984 – Cray-2
(4 vector processors)

1971 – CMU C.mmp
(16 PDP-11 processors)

Message passing interface

In mid-90s, researchers built a common interface for distributed
computing called the message passing interface (MPI)

MPI provided a set of tools to run multiple processes (on a single machine
or across many machines), that could communicate, send data between
each other (all of “scattering”, “gathering”, “broadcasting”), and
synchronize execution

Still common in scientific computing applications and HPC (high
performance computing

10

Downsides to MPI

MPI is extremely powerful but has some notable limitations

1. MPI is complicated: programs need to explicitly manage data,
synchronize threads, etc

2. MPI is brittle: if machines die suddenly, can be difficult to recover
(unless explicitly handled by the program, making them more
complicated)

11

A new paradigm for data processing

When Google was building their first data centers, they used clusters of
off-the-shelf commodity hardware; machines had different speeds and
failures were common given cluster sizes

Data itself was distributed (redundantly) over many machines, as much as
possible wanted to do the computation on the machine where the data is
stored

Led to the development of the MapReduce framework at Google
[Ghemawat, 2004], later made extremely popular through the Apache
Hadoop open source implementation

12

MapReduce

A simple paradigm for distributed computation where users write just two
functions: a mapper and a reducer

Work can be automatically farmed out to a large collection of machines

As much as possible, computation is done on the machine where the
data lives

Node failures or “stragglers” (nodes that are slow for some reason) are
automatically handled

13

Big data since MapReduce

MapReduce is a wonderful, but many disadvantages (discussed shortly)

Since ~2010s, big data community has been “slowly” trying to re-
integrate some of the ideas from the HPC community

Aside: GPUs are really the natural descendants of the HPC line of work,
which are doing pretty well in data science these days…

Remember:

Speed(network) < Speed(disk) < Speed(RAM) < Speed(Cache)

(use the fastest data storage mechanism possible)

14

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

15

Primer: map and reduce functions

We can get some intuition on MapReduce by inspiration from the map
and reduce functions in Python (but MapReduce ≠ map + reduce)

The map call takes a function and a list (iterable) and generates a new list
of the function applied to each element:

map(f, [a, b, c, ...]) -> [f(a), f(b), f(c), ...]

The reduce call takes a function and a list (iterable) and iteratively applies
the function to two elements (next item in the list and result of previous
function)

reduce(g, [a, b, c, ...]) -> g(g(g(a,b),c), ...)

16

Example: Sum of squared elements

We could take a list, square each element, and add these squared terms
together using the following code

17

data = [1,2,3,4]
values = map(lambda x : x*x, data)
values = [1, 4, 9, 16]
output = reduce(lambda x,y: x+y, values)
output = 30

Map and reduce graphically

18

f f f f

g

g

g

...

...
map

reduce

Mappers, reducers, and execution engines

We’ll specifically refer to the mapper function, the reducer function and
the execution engine (the supporting code that actually calls the map
and reduce functions)

19

def map_reduce_execute(data, mapper, reducer):
values = map(mapper, data)
output = reduce(reducer, values)
return output

def mapper_square(x):
return x**2

def reducer_sum(x,y):
return x+y

map_reduce_execute([1,2,3,4], mapper_square, reducer_sum)

Abstracting map + reduce

Key point: to use this framework, the programmer only needs to
implement the mapper and reducer function, and the execution engine
can use whatever method it wants to actually compute the result

For instance, the application of the mapper functions is inherently parallel,
can be carried out in separate threads/machines

In many cases, the reduce step can also be carried out incrementally

20

Distributed map + reduce

Single machine execution engine:

Distributed execution engine:

21

Data

Worker 1

Worker 2

Worker n

Master mapper() reducer() Master

reducer()

Data
mapper() reducer()

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

22

MapReduce (≠ map + reduce)

You can think of MapReduce as map + reduce “by key”

Mapper function doesn’t just return a single value, but a list of key-value
pairs (with potentially multiple instances of the same key)

Before calling the reducer, the execution engine groups all results by key

23

map + reduce vs. MapReduce

24

Item 1 Value 1

Item 2 Value 2

Item 1

Item 2

Key Value 1

Output

Key Value 2

Key Value 3

Key Value 4

Key
Value 1

Value 4

Key
Value 2

Value 3

Key Output

Key Output

mapper()
reducer()

mapper() Group by key
reducer()

MapReduce

map + reduce

Example: word count

the wheels on the bus
go round and round
round and round
round and round
the wheels on the bus
go round and round
all through the town

25

[(the,1) (wheels,1) (on,1) (the,1) (bus,1)]
[(go,1) (round,1) (and,1) (round,1)]
[(round,1) (and,1) (round,1)]
[(round,1) (and,1) (round,1)]
[(the,1) (wheels,1) (on,1) (the,1) (bus,1)]
[(go,1) (round,1) (and,1) (round,1)]
[(all,1) (through,1) (the,1) (town,1)]

(and, [1,1,1,1])
(on, [1,1])
(all, [1]),
(bus, [1,1]),
(round, [1,1,1,1,1,1,1,1]),
(town, [1]),
(through, [1]),
(go, [1, 1]),
(the, [1, 1, 1, 1, 1]),
(wheels, [1,1])

(and, 4)
(on, 2)
(all, 1),
(bus, 2),
(round, 8),
(town, 1),
(through, 1),
(go, 2),
(the, 5),
(wheels, 2)

mapper()

group by key reducer()

MapReduce execution engine

A simple MapReduce execution engine (no parallelism, so not particularly
useful), can be written as follows

26

def mapreduce_execute(data, mapper, reducer):
values = map(mapper, data)

groups = {}
for items in values:

for k,v in items:
if k not in groups:

groups[k] = [v]
else:

groups[k].append(v)
output = [reducer(k,v) for k,v in groups.items()]
return output

MapReduce word occurrence count example

In this engine, we can run our word occurrence counter by specifying the
following mapper and reducer

27

def mapper_word_occurrence(line):
return [(word, 1) for word in line.split(" ")]

def reducer_sum(key, val):
return (key, sum(val))

lines = ["the wheels on the bus",
"go round and round",
"round and round",
"round and round",
"the wheels on the bus",
"go round and round",
"all through the town"]

mapreduce_execute(lines, mapper_word_occurrence, reducer_sum)

More advanced usage

In original paper, and most implementations, inputs data is also in
key/value form, so the mapper also is provided with a key value pair

Many real applications require chaining together multiple map/reduce
steps

“Combiners” are local reducers that run after each map to potentially
reduce network overhead

Optional ability for functions to all share some additional context (i.e.,
shared read-only memory between multiple mappers / reducers)

28

Advantages of MapReduce

MapReduce isn’t popular because of what it can do, it’s popular because
of what it can’t do (i.e., what you don’t need to do)

End user just needs to implement two functions: mapper and reducer

No exposure of interprocess communication, data splitting, data locality,
redundancy mechanisms (can all be handled by underlying system)

29

Disadvantages of MapReduce

Can be extremely slow: in traditional MapReduce, resilience is attained by
reading/writing data from/to disk between each stage of processing

Sometimes you really do want communication between processes

Distributed data systems beyond MapReduce: Spark, GraphLab,
parameter servers, many others

All of them will frequently be slower than a single machine, if your data fits
on the disk of a single machine

30

Outline

Big data

Some context in distributed computing

map + reduce

MapReduce

MapReduce in Python (very briefly)

31

Practical MapReduce

(Obviously) you don’t want to write you own MapReduce execution
engine, use one of the many engines available

Python mrjob library: write simple mappers/reducers in Python, and
execute on Hadoop systems, Amazon Elastic MapReduce, Google Cloud

Word occurrence count example:

32

from mrjob.job import MRJob

class WordOccurrenceCount(MRJob):
def mapper(self, _, line):

for word in line.split(" "):
yield word, 1

def reducer(self, key, values):
yield key, sum(values)

