
15-388/688 - Practical Data Science:
Linear regression

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Implementation

2

Announcements

HW2 has been pushed back until tonight midnight, no late days after
deadline

HW3 out, due next Wednesday (late days as normal)

Feedback on tutorial, additional office hours to discuss today from 2:30-
3:30, GHC 8102 (we will have more on Wednesday)

688 -> 388 switches email me, need to fill out a form

Dijkstra’s algorithm…

3

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Implementation

4

A simple example: predicting electricity use

What will peak power consumption be in Pittsburgh tomorrow?

Difficult to build an “a priori” model from first principles to answer this
question

But, relatively easy to record past days of consumption, plus additional
features that affect consumption (i.e., weather)

5

Date High Temperature (F) Peak Demand (GW)
2011-06-01 84.0 2.651
2011-06-02 73.0 2.081
2011-06-03 75.2 1.844
2011-06-04 84.9 1.959
… … …

Plot of consumption vs. temperature

Plot of high temperature vs. peak demand for summer months (June –
August) for past six years

6

Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

Peak-Demand ≈ 𝜃1 ⋅ High-Temperature + 𝜃2

Here 𝜃1 is the “slope” of the line, and 𝜃2 is the intercept

How do we find a “good” fit to the data?

Many possibilities, but natural objective is to minimize some difference
between this line and the observed data, e.g. squared loss

∑ 𝜃1 ⋅ High-Temperature ' + 𝜃2 − Peak-Demand ' 2
�

'∈days

7

How do we find parameters?

How do we find the parameters 𝜃1, 𝜃2 that minimize the function
∑ 𝜃1 ⋅ High-Temperature ' + 𝜃2 − Peak-Demand ' 2

�

'∈days

≡ ∑ 𝜃1 ⋅ 𝑥 ' + 𝜃2 − 𝑦 ' 2
�

'∈days

General idea: suppose we want to minimize some function 𝑓 𝜃1

Minimum occurs at point where derivative of 𝑓 with respect to 𝜃1 is zero

8

f (θ1)

θ1

Solving for best 𝜃

We can compute the derivatives of our loss w.r.t. 𝜃1 and 𝜃2, set both
equal to zero:

𝜕
𝜕𝜃1

∑ 𝜃1 ⋅ 𝑥 ' + 𝜃2 − 𝑦 ' 2
�

'∈days
= 2 ∑ 𝑥 ' ⋅ (

�

'∈days
𝜃1 ⋅ 𝑥 ' + 𝜃2 − 𝑦 ')

𝜕
𝜕𝜃2

∑ 𝜃1 ⋅ 𝑥 ' + 𝜃2 − 𝑦 ' 2
�

'∈days
= 2 ∑ (

�

'∈days
𝜃1 ⋅ 𝑥 ' + 𝜃2 − 𝑦 ')

Setting 3
342

= 0 gives:

𝜃2 = − 1
days ∑ (

�

'∈days
𝜃1 ⋅ 𝑥 ' − 𝑦 ') = −𝜃1 ⋅ 𝑥̅ + 𝑦 ̅

where 𝑥̅ and 𝑦 ̅ denote means (mean of high temperature / peak demand)

9

Solving for best 𝜃

Plugging this in to first equation and solving gives

2 ∑ 𝑥 ' ⋅ 𝜃1 ⋅ 𝑥 ' − 𝜃1 ⋅ 𝑥̅ + 𝑦 ̅ − 𝑦 '
�

'∈days
= 0

⇒ 𝜃1 ⋅ ∑ 𝑥 ' ⋅ 𝑥 ' − 𝑥̅
�

'∈days
− ∑ 𝑥 ' ⋅ 𝑦 ' − 𝑦 ̅

�

'∈days
= 0

⇒ 𝜃1 =
∑ 𝑥 ' ⋅ 𝑦 ' − 𝑦̅�

'∈days

∑ 𝑥 ' ⋅ 𝑥 ' − 𝑥̅�
'∈days

For temperature / demand data we have:
𝜃1 = 0.046, 𝜃2 = −1.489

10

Visualizing the fit

11

Making predictions

Importantly, our model also lets us make predictions about new days

What will the peak demand be tomorrow?

If we know the high temperature will be 72 degrees (ignoring for now that
this is also a prediction), then we can predict peak demand to be:

Predicted-demand = 𝜃1 ⋅ 72 + 𝜃2 = 1.821 GW

Equivalent to just “finding the point on the line”

12

Extensions

What if we want to add additional features, e.g. day of week, instead of
just temperature?

What if we want to use a different loss function instead of squared error
(i.e., absolute error)?

What if we want to use a non-linear prediction instead of a linear one?

We can easily reason about all these things by adopting some additional
notation…

13

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Implementation

14

Machine learning

This has been an example of a machine learning algorithm

Basic idea: in many domains, it is difficult to hand-build a predictive
model, but easy to collect lots of data; machine learning provides a way
to automatically infer the predictive model from data

The basic process (supervised learning):

15

Training Data Machine learning
algorithm Predictions

𝑥 1 , 𝑦 1

𝑥 2 , 𝑦 2

𝑥 3 , 𝑦 3

⋮

Hypothesis function
𝑦 ' ≈ ℎ 𝑥 '

New example 𝑥	
𝑦 ̂ = ℎ(𝑥)

Terminology

Input features: 𝑥 ' ∈ ℝ>, 𝑖 = 1,… , 𝑚

E. g. : 𝑥 ' =
High-Temperature '

Is-Weekday '

1

Outputs: 𝑦 ' ∈ 𝒴, 𝑖 = 1,… , 𝑚
E. g. : 𝑦 ' ∈ ℝ = Peak-Demand '

Model parameters: 𝜃 ∈ ℝ>

Hypothesis function: ℎ4: ℝ> → 𝒴, predicts output given input

E. g. : ℎ4 𝑥 = 𝜃C 𝑥 = ∑ 𝜃D

>

D=1
⋅ 𝑥D

16

Terminology

Loss function: ℓ: 𝒴×𝒴 → ℝ+, measures the difference between a
prediction and an actual output

E. g. : ℓ 𝑦,̂ 𝑦 = 𝑦 ̂ − 𝑦 2

The canonical machine learning optimization problem:

minimize4 ∑ ℓ ℎ4 𝑥 ' , 𝑦 '
G

'=1

Virtually every machine learning algorithm has this form, just specify
1. What is the hypothesis function?
2. What is the loss function?
3. How do we solve the optimization problem?

17

Example machine learning algorithms

Note: we (machine learning researchers) have not been consistent in
naming conventions, many machine learning algorithms actually only
specify some of these three elements

Least squares: {linear hypothesis, squared loss, (usually) analytical
solution}
Linear regression: {linear hypothesis, *, *}
Support vector machine: {linear or kernel hypothesis, hinge loss, *}
Neural network: {Composed non-linear function, *, (usually) gradient
descent)
Decision tree: {Hierarchical axis-aligned halfplanes, *, greedy
optimization}
Naïve Bayes: {Linear hypothesis, joint probability under certain
independent assumptions, computing counts}

18

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Implementation

19

Least squares revisited

Using our new terminology, plus matrix notion, let’s revisit how to solve
linear regression with a squared error loss

Setup:
Linear hypothesis function: ℎ4 𝑥 = 𝜃C 𝑥
Squared error loss: ℓ 𝑦,̂ 𝑦 = 1

2 𝑦 ̂ − 𝑦 2

Resulting machine learning optimization problem:

minimize4 ∑ 𝜃C 𝑥 ' − 𝑦 ' 2
G

'=1

20

Matrix notation

Can write the problem more compactly adopting the following notation:

𝑋 =

𝑥 1 C

𝑥 2 C

⋮
𝑥 G C

∈ ℝG×>, 𝑦 =

𝑦 1

𝑦 2

⋮
𝑦 G

∈ ℝG

Then our optimization problem can be written

minimize4 12 𝑋𝜃 − 𝑦 2
2

where recall that 𝑥 2
2 = 𝑧C 𝑧 = ∑ 𝑧'

2�
'

21

The gradient

The condition for finding a minimum of a scalar-valued function , that the
derivative must be equal to zero (actually just true for functions with a
single local minimum), can be generalized to functions of vectors

We define the multi-variate analog of the derivative, called the gradient

For a function 𝑓 : ℝ> → ℝ, the gradient is a vector of all partial derivatives

∇4𝑓 𝜃 =

𝜕𝑓 𝜃
𝜕𝜃1

⋮
𝜕𝑓 𝜃
𝜕𝜃>

∈ ℝ>

22

The gradient, continued

Minimizing a multi-variate function just involves finding a point where the
entire gradient is zero

∇4𝑓 𝜃 = 0 (the vector of zeros)

To do this, we’re going to use the following rules (without proof, but the
analogue to the scalar case is hopefully clear)

Chain rule: ∇4𝑓 𝑋𝜃 = 𝑋C ∇K4𝑓 𝑋𝜃
Gradient of squared Euclidean norm: ∇4 𝜃 − 𝑧 2

2 = 2(𝜃 − 𝑧)

23

Solving least squares

With this notation, it’s “easy” to find an analytical solution to the least
squares problem

minimize4 12 𝑋𝜃 − 𝑦 2
2

The gradient of the optimization objective is given by:

∇4
1
2 𝑋𝜃 − 𝑦 2

2 = 𝑋C 𝛻K4
1
2 𝑋𝜃 − 𝑦 2

2 = 𝑋C 𝑋𝜃 − 𝑦

Setting this term equal to zeros gives the least-squares solution
𝑋C 𝑋𝜃 − 𝑦 ⇒ 𝜃 = 𝑋C 𝑋 −1𝑋C 𝑦

Note this solution works for any number of features

24

Example: electricity demand

Returning to our electricity demand example, this time with three features

𝑥 ' =
High-Temperature '

Is-Weekday '

1

𝜃 = 𝑋C 𝑋 −1𝑋C 𝑦 =
0.046
0.227

−1.683

25

An alternative solution method: gradient descent

The gradient provides more than a condition for optimality, it also gives
the direction of “steepest increase” for the function

Provides an intuitive approach to minimizing 𝑓(𝜃): take steps in the
direction of the negative gradient

26

θ1

θ2

∇θf (θ)

Gradient descent algorithm

Generic gradient descent algorithm:

A workhorse of machine learning (also works for functions with local
optima, are many data-efficient versions, etc)

27

Given: hypothesis function ℎ4, loss function ℓ,
input features 𝑥 ' , outputs 𝑦 ' , step size 𝛼

Initialization:
𝜃 ← 0

Repeat until convergence:
Compute gradient 𝑔 ← ∑ ∇4ℓ(ℎ4(𝑥 'G

'=1), 𝑦 ')
Update parameters 𝜃 ← 𝜃 − 𝛼 ⋅ 𝑔

Gradient descent for least squares

For linear hypothesis function and squared error, gradient descent takes
the form:

28

Given: Feature matrix 𝑋, output vector 𝑦, step size 𝛼
Initialization:

𝜃 ← 0
Repeat until convergence:

Compute gradient 𝑔 ← 𝑋C 𝑋𝜃 − 𝑦
Update parameters 𝜃 ← 𝜃 − 𝛼 ⋅ 𝑔

Progress of gradient descent

29

Least absolute deviations

Why did we pick squared error ℓ 𝑦,̂ 𝑦 = 𝑦 ̂ − 𝑦 2?

An alternative to squared error is to use the absolute error loss function,
which leads to the minimization problem:

minimize4 ∑ 𝜃C 𝑥 ' − 𝑦 ' ≡ minimize4 𝑋𝜃 − 𝑦 1

G

'=1

Unlike least squares, we cannot find a closed form solution to the zero
gradient condition (because the function is not differentiable, it’s actually
called a subgradient, but we don’t worry about such things here)

Can still be solved using gradient descent, and the gradient
∇4 𝑋𝜃 − 𝑦 1 = 𝑋C sign(𝑋𝜃 − 𝑦)

30

Squared vs. absolute error

31

Regularization

We often want (for reasons that we’ll discuss much more next lecture), to
also penalize values of 𝜃 that are too large

To accomplish this, we’ll actually include two terms in our canonical
machine learning problem, the loss term and what is called a
regularization term

minimize4 ∑ ℓ ℎ4 𝑥 ' , 𝑦 '
G

'=1
+ 𝜆

2 𝜃 2
2

We’ll talk about the meaning of regularization soon, but for now the
important point is that when we add regularization, we are considering
the relative scales of the 𝜃D terms

32

Feature normalization

The features themselves need to be scaled similarly, or parameter
weights are not comparable, thus common to normalize features by

𝑥D̃
' =

𝑥D
' − mean 𝑥D

std 𝑥D

(not done for constant feature, 𝑥>)

If we then solve for 𝜃 ̃by minimizing loss, we need to transform 𝜃 similarly:

𝜃D =
𝜃D̃

std(𝑥D)
, 𝜃> = 𝜃> − ∑ 𝜃D ⋅ mean 𝑥D

G

'=1

33

Outline

Least squares regression: a simple example

Machine learning notation

Linear regression revisited

Implementation

34

Least squares in Python

There are libraries that will do this for you, but for ordinary least squares,
it’s my personal belief that you should always do it yourself

Note: for numerical stability, you may have to add a little bit of
regularization to the 𝑋C 𝑋 matrix (we’ll discuss this much more later)

35

Set up X and y numpy arrays
theta = np.linalg.solve(X.T.dot(X), X.T.dot(y))

Set up X and y numpy arrays
theta = np.linalg.solve(X.T.dot(X) + 1e-4*np.eye(X.shape[1]), X.T.dot(y))

Gradient descent in Python

A simple implementation of gradient descent for least squares

Absolute loss case is identical except for the lines:

36

def gradient_descent_squared_loss(X, y, T, alpha):
m,n = X.shape
theta = np.zeros(n)
f = np.zeros(T)
for i in range(T):

f[i] = 0.5*np.linalg.norm(X.dot(theta) - y)**2
g = X.T.dot(X.dot(theta) - y)
theta = theta - alpha*g

return theta, f

f[i] = np.linalg.norm(X.dot(theta) - y,1)
g = X.T.dot(np.sign(X.dot(theta) - y))

Normalizing features

Normalize features before running gradient descent

Convert theta back to original feature space

37

compute normalized features
X0 = X[:,:-1]
meanX = np.mean(X0,axis=0)
stdX = np.std(X0, axis=0)
X0 = np.hstack([(X0 - meanX)/stdX, np.ones((X.shape[0],1))])

theta, f0 = gradient_descent_squared_loss(X0,y,20,1e-3)

theta[:-1] = theta[:-1]/stdX
theta[-1] -= theta[:-1].dot(meanX)

