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Announcements

Project proposal due tonight, we’ll change the form so that the few 
students who have emailed me about single-person groups can submit 
(but you must email us first and must have a very good reason)

HW4 due on Wednesday

Mid-semester grades out today, do not take too seriously… 

Summary statistics from survey, median time spent per HW
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SCS Other schools
15-388 10 hours 15 hours
15-688 21 hours 30 hours
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Motivating setting

For a data science course, there has been very little “science” thus far…

“Science” as I’m using it roughly refers to “determining truth about the 
real world”
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Asking scientific questions

Suppose you work for a company that is considering a redesign of their 
website; does their new design (design B) offer any statistical advantage 
to their current design (design A)?

In linear regression, does a certain variable impact the response? (E.g. 
does energy consumption depend on whether or not a day is a weekday 
or weekend?)

In both settings, we are concerned with making actual statements about 
the nature of the world
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Sample statistics

To be a bit more consistent with standard statistics notation, we’ll 
introduce the notion of a population and a sample
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Population Sample

Mean

Variance

𝜇 = 𝐄[𝑋]

𝜎 = 𝐄[ 𝑋 − 𝜇 2]

𝑥̅ = 1
𝑚 ∑ 𝑥 +

,

+=1

𝑠2 = 1
𝑚 − 1∑ 𝑥 + − 𝑥̅ 2

,

+=1



Sample mean as random variable

The same mean is an empirical average over 𝑚 independent samples 
from the distribution; it can also be considered as a random variable

This new random variable has the mean and variance

𝐄 𝑥̅ = 𝐄 1
𝑚 ∑ 𝑥 +

,

+=1
= 1

𝑚 ∑ 𝐄 𝑋
,

+=1
= 𝐄 𝑋 = 𝜇

𝐕𝐚𝐫 𝑥̅ = 𝐕𝐚𝐫 1
𝑚 ∑ 𝑥 +

,

+=1
= 1

𝑚2 ∑ 𝐕𝐚𝐫[𝑋]
,

+=1
= 𝜎2

𝑚
where we used the fact that for independent random variables 𝑋1, 𝑋2

𝐕𝐚𝐫 𝑋1 + 𝑋2 = 𝐕𝐚𝐫 𝑋1 + 𝐕𝐚𝐫 𝑋2

When estimating variance of sample, we use 𝑠2/𝑚 (the square root of 
this term is called the standard error)
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Central limit theorem

Central limit theorem states further that 𝑥̅ (for “reasonably sized” samples, 
in practice 𝑚 ≥ 30) actually has a Gaussian distribution regardless of the 
distribution of 𝑋

𝑥̅ → 𝒩 𝜇, 𝜎
2

𝑚  or equivalently  𝑥̅ − 𝜇
𝜎/𝑚1/2 → 𝒩(0,1)

In practice, for 𝑚 < 30 and for estimating 𝜎2 using sample variance, we 
use a Student’s t-distribution with 𝑚 − 1 degrees of freedom

𝑥̅ − 𝜇
𝑠/𝑚1/2 → 𝑇,−1,  𝑝 𝑥; 𝜈 ∝ 1 + 𝑥2

𝜈

−9+1
2
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Aside: why the 𝑚 − 1 scaling?

We scale the sample variance by 𝑚 − 1 so that it is an unbiased estimate 
of the population variance

𝐄 ∑ 𝑥 + − 𝑥̅ 2
,

+=1
= 𝐄 ∑ 𝑥 + − 𝜇 − 𝑥̅ − 𝜇

2,

+=1

= 𝐄 ∑ 𝑥 + − 𝜇 2 − 𝑥̅ − 𝜇
,

+=1
∑ 𝑥 + − 𝜇
,

+=1
+ 𝑚 𝑥̅ − 𝜇 2

= 𝐄 ∑ 𝑥 + − 𝜇 2
,

+=1
− 𝑚𝐄 ∑ 𝑥̅ − 𝜇 2

,

+=1

= 𝑚𝐕𝐚𝐫 𝑋 − 𝑚𝐕𝐚𝐫 𝑋
𝑚 = 𝑚 − 1 𝜎2
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Hypothesis testing

Using these basic statistical techniques, we can devise some tests to 
determine whether certain data gives evidence that some effect “really” 
occurs in the real world

Fundamentally, this is evaluating whether things are (likely to be) true 
about the population (all the data) given a sample

Lots of caveats about the precise meaning of these terms, to the point 
that many people debate the usefulness of hypothesis testing at all

But, still incredibly common in practice, and important to understand
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Hypothesis testing basics

Posit a null hypothesis 𝐻0 and an alternative hypothesis 𝐻1 (usually just 
that “𝐻0 is not true”

Given some data 𝑥, we want to accept or reject the null hypothesis in 
favor of the alternative hypothesis
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𝑯𝟎 true 𝑯𝟏 true

Accept 𝑯𝟎 Correct Type II error
(false negative)

Reject 𝑯𝟎
Type I error 

(false positive) Correct

𝑝 reject 𝐻0 𝐻0 true = “significance of test”

𝑝 reject 𝐻0 𝐻1 true = “power of test”



Basic approach to hypothesis testing

Basic approach: compute the probability of observing the data under 
the null hypothesis (this is the p-value of the statistical test)

𝑝 = 𝑝 data 𝐻0 is true)

Reject the null hypothesis if the p-value is below the desired significance 
level (alternatively, just report the p-value itself, which is the lowest 
significance level we could use to reject hypothesis)

Important: p-value is 𝑝 data 𝐻0 is true) not 𝑝 𝐻0 not true data)

15



Canonical example: t-test

Given a sample 𝑥 1 ,… , 𝑥 , ∈ ℝ
 

𝐻0: 𝜇 = 0 (for population)
𝐻1: 𝜇 ≠ 0

By central limit theorem, we know that 𝑥̅ − 𝜇 /(𝑠/𝑚1
2) ∼ 𝑇,−1

(Student’s t-distribution with 𝑚 − 1 degrees of freedom)

So we just compute 𝑡 = 𝑥/̅ 𝑠/𝑚1
2 (called test statistic), then compute 

𝑝 = 𝑝 𝑥 > 𝑡 + 𝑝 𝑥 < − 𝑡 = 𝐹 − 𝑡 + 1 − 𝐹 𝑡 = 2𝐹 (− 𝑡 )

 (where 𝐹 is cumulative distribution function of Student’s t-distribution)
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Visual example

What we are doing fundamentally is modeling the distribution 𝑝 𝑥̅ 𝐻0
and then determining the probability of the observed 𝑥̅ or a more extreme 
value
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𝑝 = Area



Code in Python

Compute 𝑡 statistic and 𝑝 value from data
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import numpy as np
import scipy.stats as st
x = np.random.randn(m)

# compute t statistic and p value
xbar = np.mean(x)
s2 = np.sum((x - xbar)**2)/(m-1)
std_err = np.sqrt(s2/m)
t = xbar/std_err

t_dist = st.t(m-1)
p = 2*td.cdf(-np.abs(t))

# with scipy alone
t,p = st.ttest_1samp(x, 0)



Two-sided vs. one-sided tests

The previous test considered deviation from the null hypothesis in both 
directions (two-sided test), also possible to consider a one-sided test

𝐻0: 𝜇 ≥ 0 (for population)
𝐻1: 𝜇 < 0

Same 𝑡 statistic as before, but we only compute the area under the left 
side of the curve

𝑝 = 𝑝 𝑥 < 𝑡 = 𝐹 (𝑡)
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Confidence intervals

We can also use the 𝑡 statistic to create confidence intervals for the mean

Because 𝑥 ̅has mean 𝜇 and variance 𝑠2/𝑚, we know that 1 − 𝛼 of its 
probability mass must lie within the range

𝑥̅ = 𝜇 ± 𝑠
𝑚1/2 ⋅ 𝐹 −1 1 − 𝛼

2 ≡ 𝜇 + 𝐶𝐼 𝑠, 𝑚, 𝛼
⟺ 𝜇 = 𝑥̅ ± 𝐶𝐼 𝑠, 𝑚, 𝛼

where 𝐹 −1 denotes the inverse CDF function of 𝑡-distribution with 𝑚 − 1 
degrees of freedom
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# simple confidence interval compuation
CI = lambda s,m,a : s / np.sqrt(m) * st.t(m-1).ppf(1-a/2)
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Experimental design: A/B testing

Up until now, we have assumed that the null hypothesis is given by some 
known mean, but in reality, we may not know the mean that we want to 
compare to

Example: we want to tell if some additional feature on our website makes 
user stay longer, so we need to estimate both how long users stay on the 
current site and how long they stay on redesigned site

Standard approach is A/B testing: create a control group (mean 𝜇1) and a 
treatment group (mean 𝜇2)

𝐻0: 𝜇1 = 𝜇2 or e. g. 𝜇1 ≥ 𝜇2
𝐻1: 𝜇1 ≠ 𝜇2 or e. g. 𝜇1 < 𝜇2
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Independent 𝑡-test (Welch’s 𝑡-test)

Collect samples (possibly different numbers) from both populations
𝑥1

1 ,… , 𝑥1
,1 , 𝑥2

1 ,… , 𝑥2
,2

compute sample mean 𝑥1̅, 𝑥2̅ and sample variance 𝑠1
2, 𝑠2

2 for each group 

Compute test statistic

𝑡 = 𝑥1̅ − 𝑥2̅
𝑠1

2/𝑚1 + 𝑠2
2/𝑚2

1/2

And evaluate using a t distribution with degrees of freedom given by
𝑠1

2/𝑚1 + 𝑠2
2/𝑚2

2

𝑠1
2/𝑚1

2

𝑚1 − 1 + 𝑠2
2/𝑚2

2

𝑚2 − 1
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Starting seem a bit ad-hoc?

There are a huge number of different tests for different situations

You probably won’t need to remember these, and can just look up 
whatever test is most appropriate for your given situation

But the basic idea in call cases is the same: you’re trying to find the 
distribution of your test statistic under the hull hypothesis, and then you 
are computing the probability of the observed test statistic or something 
more extreme

All the different tests are really just about different distributions based 
upon your problem setup
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Hypothesis testing in linear regression

One last example (because it’s useful in practice): consider the linear 
regression 𝑦 ≈ 𝜃P 𝑥, and suppose we want to perform a hypothesis test 
on the coefficients of 𝜃

Example: suppose that instead of just two website, you have a website 
with multiple features that can be turned on/off, and your sample data 
includes a wide variety of different samples

We would like to ask the question: is the 𝑖th variable relevant for 
predicting the output?

We’ve already seen ways we can do this (i.e., evaluate cross-validation 
error, but it’s a bit difficult to understand what such mean
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Formula for sample variance in linear regression

There is an analogous formula for sample variance on the errors that a 
linear regression model makes

𝑠2 = 1
𝑚 − 𝑛 ∑ 𝑦 + − 𝜃P 𝑥 + 2

,

+=1

Use this to determine sample covariance of coefficients
𝐂𝐨𝐯 𝜃 = 𝑠2 𝑋P 𝑋 −1

Can then evaluate null hypothesis 𝐻0: 𝜃+ = 0, using t statistic
𝑡 = 𝜃+/𝐂𝐨𝐯 𝜃 +,+

1/2

Similar procedure to get confidence intervals of coefficients
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P-values considered harmful

A basic problem is that 𝑝 data 𝐻0 ≠ 𝑝(𝐻0|data) (despite being 
frequently interpreted as such)

People treat 𝑝 < 0.05 with way too much importance

27

Histogram of p values from ~3,500 
published journal papers
(from E. J. Masicampo and Daniel 
Lalande, A peculiar prevalence of p 
values just below .05, 2012)


