
15-388/688 - Practical Data Science:
Graphs and Networks

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

2

Announcements

There have been substantial problems with the autograder for HW2,
Problem 1

We are hoping to fix these today, but you may want to hold off on
submission until we send an email confirming that the grader is fixed

Participation policy (e.g. negative points for already-answered questions),
will not hold for this question, all questions are ok

We don’t want to push deadline too much further back, but we will
allow everyone to use all three late days on assignment (without
decreasing late days)

I.e., new (but hard) deadline is Monday, 10/3

3

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

4

Networks vs. graphs?

Our terminology (fairly standard, though some use them differently):
Networks are the systems of interrelated objects (in the real world)
Graphs are the mathematical model for representing networks

This lecture is largely about representations and algorithms for graphs

But of course, in data science we use these algorithms to answer
questions about networks

5

Graphs models

A graph is a collection of vertices (nodes) and edges 𝐺 = (𝑉 , 𝐸)

𝑉 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹
𝐸 = 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐵, 𝐶 , 𝐶, 𝐷 , 𝐷, 𝐸 , 𝐷, 𝐹 , 𝐸, 𝐹

6

A C

B

D F

E

Directed vs. undirected graphs

7

Undirected
E.g. paper co-authorship

Directed
E.g. web links

A C

B D

A C

B D

Weighted vs. unweighted graphs

8

Unweighted
E.g. friends on
social network

Weighted
E.g. travel distance

between cities

A C

B D

A C

B D

1

4 1 3

Some example graphs

9

PA road network:
1M nodes, 3M edges

Patent citations:
3.7M nodes, 16.5M edges

Internet topology (in 2005)
1.6M nodes, 11M edges

LiveJournal social network
4.8M nodes, 69M edges

Graphs from http://snap.stanford.edu, visualizations from http://www.cise.ufl.edu/research/sparse/matrices/SNAP/

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

10

Representations of graphs

There are a few different ways that graphs can be represented in a
program, which one you choose depends on your use case

E.g., are you going to be modifying the graph dynamically
(adding/removing nodes/edges), just analyzing a static graph, etc?

Three main types we will consider:
1. Adjacency list
2. Adjacency dictionary
3. Adjacency matrix

11

Adjacency list
For each node, store an array of the nodes that it connects to

Pros: easy to get all outgoing links from a given node, fast to add new
edges (without checking for duplicates)

Cons: deleting edges or checking existing of an edge requires scan
through given node’s full adjacency array

12

Node Edges
A [B]
B [C]
C [A,D]
D []

A C

B D

Adjacency dictionary
For each node, store a dictionary of the nodes that it connects to

Pros: easy to add/remove/query edges (requires two dictionary lookups,
so a 𝑂(1) operation)

Cons: overhead of using a dictionary over array

13

Node (key) Edges
A {B:1.0}
B {C:1.0}
C {A:1.0,D:1.0}
D {}

A C

B D

Adjacency matrix
Store the connectivity of the graph as a matrix

In virtually all cases, you will want to store this as a sparse matrix

Pros/cons depend on which sparse matrix format you use, but most
operations on a static graph will but much faster using the right format

14

A C

B D

𝐴 =
0 0
1 0
0 1
0 0

1 0
0 0
0 0
1 0

(From)
A B C D

A
B
C
D

(To)

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

15

Graph algorithms

Algorithms for graphs could be (in fact, is) an entire course on its own

We’re going to briefly highlight just three algorithms that address different
problem classes in graphs

1. Finding shortest paths in a graph – Dijkstra’s algorithm
2. Finding important nodes in a graph – PageRank
3. Finding communities in a graph – Girvan-Newman

16

Shortest path problem

Classical graph problem: find the shortest path between two nodes

Some important distinctions or modifications
Weighted vs. unweighted, directed vs. undirected, negative weights
Single-source shortest path (we’ll do this one)
All-pairs shortest path

17

Dijkstra’s algorithm

Algorithm for single-source shortest path

Basic idea: dynamic programming algorithm, at each node maintain an
upper bound on distance to source, iteratively expand node with smallest
upper bound (updating bounds of its neighbors)

18

Given: Graph 𝐺 = (𝑉 , 𝐸), Source 𝑠
Initialize:

𝐷 𝑠 ← 0, 𝐷 𝑖 ≠ 𝑠 ← ∞
𝑄 ← 𝑉

Repeat until 𝑄 empty:
𝑖 ← Remove element from 𝑄 with smallest 𝐷
For all 𝑗 such that 𝑖, 𝑗 ∈ 𝐸:

𝐷 𝑗 = min 𝐷 𝑗 , 𝐷 𝑖 + 1

Dijkstra’s algorithm example

Initialization: source 𝐴
𝐷 = 0, ∞, ∞, ∞
𝑄 = 𝐴, 𝐵, 𝐶, 𝐷

Step 1: Pop node A
𝑄 = 𝐵, 𝐶, 𝐷
𝐷 = 0,1,1, ∞

Step 2: Pop node 𝐵
𝑄 = 𝐶, 𝐷
𝐷 = 0,1,1, ∞

Step 3: Pop node 𝐶
𝑄 = 𝐷
𝐷 = 0,1,1,2

Step 4: Pop node 𝐷
𝑄 =
𝐷 = [0,1,1,2]

19

A C

B D

“Important” nodes

What are the important nodes in the following network?

Unlike shortest path, there is not correct answer here, depends on how
you define importance

20

PageRank algorithm

The algorithm that started Google

Perspective on importance: consider a random walk on the graph
We start at a random node
We repeatedly jump to a random neighboring node
If the node has no outgoing edges (in directed graph), jump to a
random node
(Optionally) also jump to a random node with probability 𝑑

Node importance is the probability that we will be at a given node when
following the above procedure

21

PageRank algorithm

For those who have heard these terms, this algorithm is creating a
Markov chain over the graph, and finding the stationary distribution
(largest eigenvector) of this Markov chain

22

Given: Graph 𝐺 = 𝑉 , 𝐸 , restart probability 𝑑, iteration count 𝑇
Initialize:

𝐴 ← Adjacency − Matrix 𝐺
𝑃 ← replace zero columns of 𝐴 with 1, and normalize columns
𝑃̂ ← 1 − 𝑑 𝑃 + 7

8 119

𝑥 ← 1
|8 | 1

Repeat 𝑇 times:
𝑥 ← 𝑃̂𝑥

PageRank example

23

A C

B D

𝐴 =
0 0
1 0
0 1
0 0

1 0
0 0
0 0
1 0

𝑃 =
0 0
1 0
0 1
0 0

0.5 0.25
0 0.25
0 0.25

0.5 0.25
 𝑃̂ =

0.025 0.025
0.925 0.025
0.025 0.925
0.025 0.025

0.475 0.25
0.025 0.25
0.025 0.25
0.475 0.25

𝑑 = 0.9

𝑥 →
0.21
0.26
0.31
0.21

Community detection

Community: subgraphs where nodes are densely connected to each
other, but sparsely connected to other nodes

A “soft” version of a clique (a fully connected subgraph)

A fundamental concept in e.g. social networks

24

Girvan-Newman Algorithm

Published in 2002 (Girvan and Newman, 2002), one of the first methods
of “modern” community detection

Basic idea: Recursively partition the network by removing edges, groups
that are last to be partitioned are “communitites”

1. Compute “betweenness” of edges in the network = number of
shortest paths that pass through each edge

2. Remove edge(s) with highest betweenness, if this breaks the
graph into subgraphs, recursively partition each one

Challenge is efficiently computing betweenness as we partition graph (we
will not cover this)

Result is a hierarchical partitioning of the graph

25

1

2
3

4
6

5

7

9

8

10

11

12
13

14

Algorithmic illustration

26

49
33

12
1

1

2
3

4
6

5

7

9

8

10

11

12
13

14

Algorithmic illustration

27

Algorithmic illustration

28

1

2
3

4
6

5

7

9

8

10

11

12
13

14

Resulting hierarchy (dendrogram)

29

Communities can be extracted by looking at the grouping at different
levels of the tree

May want to threshold on things like community size, etc

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Outline

Networks and graph

Representing graphs

Graph algorithms

Graph libraries

30

NetworkX

NetworkX: Python library for dealing with (medium-sized) graphs

https://networkx.github.io/

Simple Python interface for constructing graph, querying information
about the graph, and running a large suite of algorithms

Not suitable for very large graphs (all native Python, using adjacency
dictionary representation)

31

Creating graphs

Create an undirected or directed graph

Add and remove nodes/edges

32

import networkx as nx

G = nx.Graph() # undirected graph
G = nx.DiGraph() # directed graph

add and remove edges
G.add_edges_from([("A","B"), ("B","C"), ("C","A"), ("C","D")])
G.remove_edge("A","B")
G.add_edge("A","B")
G.remove_edges_from([("A","B"), ("B","C")])
G.add_edges_from([("A","B"), ("B","C")])
also add_node(), remove_node(), add_nodes_form(), remove_nodes_from()

Nodes/edges and properties

NetworkX uses adjacency dictionary format internally

Iterate over nodes and edges

Get and set node/edge properties

33

for i in G.nodes(): # loop over nodes
print i

for i,j in G.edges(): # loop over edges
print i,j

G.node["A"]["node_property"] = "node_value"
G.edge["A"]["B"]["edge_property"] = "edge_value"
G.nodes(data=True) # iterator over nodes returning properties
G.edges(data=True) # iterator over edges returning properties

print G["C"]
{'A': {}, 'D': {}}

Drawing and node properties

Draw a graph using matplotlib (not the best visualization)

34

import matplotlib.pyplot as plt
%matplotlib inline
nx.draw(G,with_labels=True)
plt.savefig("mpl_graph.pdf")

Algorithms

Almost all the (medium scale) algorithms you could want

35

nx.shortest_path_length(G,source="A") # iterater over path lengths

nx.pagerank(G,alpha=0.9) # dictionary of node ranks

NOTE: this requires Networkx 2.0dev
pip install --upgrade git+git://github.com/networkx/networkx.git
nx.girvan_newman(G) # iterator over partitions at

different hierarchy levels

