15-388/688 - Practical Data Science:
Free text and natural language processing

J. Zico Kolter
Carnegie Mellon University
Fall 2016



Announcements

HW 3 out tonight
Feedback on tutorial topics sent tomorrow

Some minor glitch with 388 <-> 688 switch poll, everyone who replied
should have been contacted, and we will finalize these switches
tomorrow

Some guidance on tutorial: going to replace the geographic information
systems lecture with a tutorial that can serve as an example of what we
are looking for

Switching website hosts tomorrow AM, website may be down briefly



Outline

Free text in data science
Bag of words and TFIDF
Language models and N-grams

(Next time) Libraries for handling free text



Outline

Free text in data science



Free text in data science vs. NLP

A large amount of data in many real-world data sets comes in the form of
free text (user comments, but also any “unstructured” field)

(Computational) natural language processing: write computer programs
that can understand natural language

This lecture: try to get some meaningful information out of unstructured
text data



Understanding language is hard

Multiple potential parse trees:

“While hunting in Africa, | shot an elephant in my pajamas. How he
got into my pajamas, | don't know.” — Groucho Marx

Winograd schemas:

“The city councilmen refused the demonstrators a permit because
they [feared/advocated] violence.”

Basic point: \We use an incredible amount of context to understand what
natural language sentences mean



But is it always hard?

Two reviews for a movie (the latest Star Wars):

1. “... truly, a stunning exercise in large-scale filmmaking; a beautifully-
assembled picture in which Abrams combines a magnificent cast
with a marvelous flair for big-screen, sci-fi storytelling.”

2. “lt's loud and full of vim -- but a little hollow and heartless.”
Which one is positive?

We can often very easily tell the “overall gist” of natural language text
without understanding the sentences at all



But is it always hard?

Two reviews for a movie (the latest Star Wars):

1. “... truly, a stunning exercise in large-scale flmmaking; a beautifully-
assembled picture in which Abrams combines a magnificent cast
with a marvelous flair for big-screen, sci-fi storytelling.”

2. “It's loud and full of vim -- but a little hollow and heartless.”
Which one is positive?

We can often very easily tell the “overall gist” of natural language text
without understanding the sentences at all



Natural language processing for data science

In many data science problems, we don’t need to truly understand the
text in order to accomplish our ultimate goals (e.g., use the text in forming
another prediction)

In this lecture we will discuss two simple but very useful techniques that
can be used to infer some meaning from text without deep understanding

1. Bag of words approaches and TFIDF matrices
2. N-gram language models

Note: this lecture may be subject to change in the upcoming years, as
massive improvements in “off-the-shelt” language understanding are
ongoing (for example, this has already happened to image understanding)



Bag of words and TFIDF

Outline

10



Brief note on terminology

In this lecture, we will talk about “documents”, which mean individual
groups of free text
(Could be actual documents, or e.g. separate text entries in a table)

“Words” or “terms” refer to individual words (tokens separated by
whitespace) and often also punctuation

“Corpus” refers to a collection of documents

11



Bag of words

AKA, the word cloud view of documents

practical

4_, av
c
v
=
c
oo

-
n
%]
-

odeling
tutorial

m

techniquesy

orlthms

Course. .

foci%'ie@t?orrnlngl” ject SeCt lon statistical
Word cloud of class webpage

G

Represent each document as a vector of word frequencies

Order of words is irrelevant, only matters how often words occur



Bag of words example

“The goal of this lecture is to explain the basics of free text processing”
“The bag of words model is one such approach”

“Text processing via bag of words”

S

o %) 8

— 5 O - =

2.,55888223 &
212110001 O | Document 1
X=1111001100...1!Dbocument?2
O0O100T1TT1TT171 0 | Document 3

13



Term frequency

“Term frequency” just refers to the counts of each word in a document

Denoted tfi, ; = frequency of word 7 in document ¢ (sometimes indices
are reversed, we use these for consistency with matrix above)

Often (as in the previous slide), this just means the raw count, but there
are also other possibilities

1. tf; ; € {0,1} - does word occur in document or not
2. log(1+tf; ;) —log scaling of counts

3. tf; ;/ max tf; ; - scale by document’s most frequent word
J

14



Inverse document frequency

Term frequencies tend to be “overloaded” with very common words
(“the”’ “iS”’ “Of”’ etC)

|dea if inverse document frequency weight words negatively in proportion
to how often they occur in the entire set of documents

, # documents
idf; = log ( . )
J # documents with word j

As with term frequency, there are other version as well with different
scalings, but the log scaling above is most common

Note that inverse document frequency is just defined for words not for
word-document pairs, like term frequency

15



Inverse document frequency examples

S O ~ lecture

= = O words

O — no the
O = =S
— = po Of
S O = goal
— = O bag
— O O via

>
|

idf_; = log (g) =0

idf,, = log @) = 0.405
=1lo

3
idf . = g( ) —1.098

— |

— O — text

e
O]
®
O
=
Q
Q.
®

Document 2

0 | Document 1
1
01 Document 3

16



TFIDF

Term frequency inverse document frequency = tf; ,; xidf;

Just replace the entries in the X matrix with their TFIDF score instead of
their raw counts (also common to remove “stop words” beforehand)

This seems to work much better than using raw scores for e.g.
computing similarity between documents or building machine learning
classifiers on the documents

%) @ 0 é
0.8 04 0 1.1

X = {0.4 04 0 O }
O 0 0 O

17



Cosine similarity

A fancy name for “normalized inner product”

Given two documents x, y represented by TFIDF vectors (or just term
frequency vectors), cosine similarity is just

wTy

Cosine-Similarity = R
L2 < Yll2

Between zero and one, higher numbers mean the documents are more
similar

18



Cosine similarity example

“The goal of this lecture is to explain the basics of free text processing”
“The bag of words model is one such approach”
“Text processing via bag of words”

1 0.068 0.078
M = 10.068 1 0.103

0.078 0.103 1

19



Language models and N-grams

Outline

20



Language models

While the bag of words model is surprisingly effective, it is clearly throwing
away a lot of information about the text

The terms “boring movie and not great” is not the same in a movie review
as “great movie and not boring”, but they have the exact same bag of
words representations

To move beyond this, we would like to build a more accurate model of
how words really relate to each other: language model

21



Probabilistic language models

We haven’t covered probability much yet, but with apologies for some

forward references, a (probabilistic) language model aims at providing a

probability distribution over every word, given all the words before it
P(word,|wordy, ..., word, ;)

E.g., you probably have a pretty good sense of what the next word
should be:

“Data science is the study and practice of how we can extract insight
and knowledge from large amounts of”

P(word, = “data”|word, ..., word, ;) =7
P(word; = “hotdogs”|wordy, ..., word, ;) =

22



Building language models

Building a language model that captures the true probabilities of natural
language is still a distant goal

Instead, we make simplifying assumptions to build approximate but
tractable models

n~-gram model: the probability of a word depends only onthe n — 1
word preceding it
P(word,|word,, ..., word,_,) ~ P(word,|word,_,,.q,...,word;_ ;)

This puts a hard limit on the context that we can use to make a

prediction, but also makes the modeling more tractable
“large amounts of data” vs. “large amounts of hotdogs”

23



Estimating probabilities

A simple way (but not the only way) to estimate the conditional
probabilities is simply by counting
#(word;_,,. 1, ..., word;)

P(word,;|word,_,,.,...,word; ;) = Zword_.1.....word_ 1)
1—n+1r 1—

E.Q.:
#(“large amounts of data”)

P(“data”|“large amounts of”) = #(“large amounts of”)

24



Example of estimating probabilities

Very short corpus:
“The goal of this lecture is to explain the basics of free text processing”

Using an 2-gram model

P(WOI‘dJWOI’dz_l — “Of”) — ?

25



Laplace smoothing

Estimating language models with raw counts tends to estimate a lot of
zero probabilities (especially if estimating the probability of some new text
that was not used to build the model)

Simple solution: allow for any word to appear with some small probability
#(word;_,, 1, ..., word;) + «

#(word;_,,,1,...,word, ;) + aD

P(WOI‘dZ |WOI‘dZ_n_|_1 g eeey WOI‘dZ_1> —

where o« is some number and D is total size of dictionary

Also possible to have “backoffs” that use a lower degree n-gram
when the probability is zero

26



How do we pick n?

Lower n: less context, but more samples of each possible n-gram
Higher n: more context, but less samples
“Correct” choice is to use some measure of held-out cross-validation

In practice: use n = 3 for large datasets (i.e., triplets) , n = 2 for small
ones

27



Examples

Random samples from language model trained on Shakespeare:

Nn=1: “in as , stands gods revenge ! france pitch good in
fair hoist an what fair shallow-rooted , . that with
wherefore it what a as your . , powers course which thee
dalliance all”

N=2: “look you may i have given them to the dank here to
the jaws of tune of great difference of ladies . o that
did contemn what of ear is shorter time ; yet seems to”

N=3: “believe , they all confess that you withhold his
levied host , having brought the fatal bowels of the pope
! ' and that this distemper'd messenger of heaven , since
thou deniest the gentle desdemona ,”



More examples

N=7: “so express'd : but what of that ? 'twere good you do
so much for charity . i cannot find it ; 'tis not in the
bond . you , merchant , have you any thing to say ? but

little”

This is starting to look a lot like Shakespeare, because it is Shakespeare

As we have higher order n-grams, the previous (n-1) words have only
appeared very few times in the corpus, so we will always just sample the
next word that occurred

29



Evaluating language models

How do we know how well a language model performs

Common strategy is to estimate the probability of some held out portion
of data, and evaluate perplexity

1 N
...WOI‘dN)>

log, P(wordy,...word )

Perplexity = 2 N =

(P(WOI‘dl,

where we can evaluate the probability using

N
P(word,,...word, ) = P(word,|word.__ _ +,...,word,_
1 n ) 1—n—+1 1—1

(note that you can compute the log of this quantity directly)

30



Evaluating perplexity

Perplexity on the corpus used to build the model will always decrease
using higher n (fewer choices of what comes next means higher
probability of observed data)

Note: this is only strictly true when o = 0

10°

Perplexity
c_D\I\)

—
o_\

RN
o
o

12 3 4 5 6 7 8 9 10
n

31



Evaluating perplexity

What really matters is how well the model captures text from the “same”
distribution that was not used to train the model

10°

Perplexity
SA

—
o
w

—_
o
N

12 3 4 5 6 7 8 9 10
n

This is a preview of overfitting/model selection, which we will talk about a
lot in the machine learning section

32



Libraries for handling free text

Outline

33



NLTK library

The NLTK (natural language toolkit) library (http://www.nltk.org) is the
standard Python library for handling text and natural language data

Note: NLTK is a massive library, and is a bit more geared towards things
like tagging, parsing, and more complex processes instead of the
techniques described previously

Additionally, it actually doesn’t contain much of what we want to do (no
TFIDF creation, there was an n-gram language model but it was removed
due to bugs)

You may want to look at some other options: spacy, CoreNLP

34



Reading and tagging documents

Load nltk and download necessary files:

import nltk
import nltk.corpus
#nltk.download() # just run this once

Tokenize a document

"The goal of this lecture isn't to explain complex free text

sentence =
processing"
tokens = nltk.word tokenize(sentence)

'of', 'this', 'lecture', 'is', "n't", 'to', 'explain',

# [ 'The', 'goal',

'complex', 'free', 'text', 'processing']

Tag parts of speech

pos = nltk.pos tag(tokens)
# [('The', 'DT'), ('goal', 'NN'), ('of', 'IN'), ('this', 'DT'),
('lecture', 'NN'), ('is', 'VBZ'), ("n't", 'RB'), ('to', 'TO'),

( 'explain', 'VvB'), ('complex', 'JgJ'), ('free', 'Jg’s'), ('text', 'NN'),

( 'processing’', 'NN')]

30




Stop words and n-grams

Get list of English stop words (common words)

stopwords = nltk.corpus.stopwords.words("English")

print [a for a in tokens if a.lower() not in stopwords]

# [ 'goal', 'lecture', "n't", 'explain', 'complex', 'free', 'text',
'processing’']

Generate n-grams from document

list(nltk.ngrams(tokens, 3))

# [('The', 'goal', 'of'), ('goal', 'of', 'this'), ('of', 'this',
'lecture'), ('this', 'lecture', 'is'), ('lecture', 'is', "n't"), ('is’',
"n't", 'to'), ("n't", 'to', 'explain'), ('to', 'explain', 'complex'),

( 'explain', 'complex', 'free'), ('complex', 'free', 'text'), ('free',
'text', 'processing')]

# code below does the same thing, without nltk
zip(*[tokens[i:] for i in range(3)])

36




Scikit Learn library

Scikit Learn library (http://scikit-learn.org/) is one of the standard Python
libraries for machine learning

This lecture is odd place to introduce it (we'll use Scikit Learn much more
in the machine learning portions of this course), but the library also
contains useful routines for building word count matrices

37



Creating “TFIDF” matrix

Create frequency counts and TFIDF matrices

data = |
"the goal of this lecture is to explain the basics of free text

processing",
"the bag of words model is one such approach",
"text processing via bag of words"

from sklearn.feature_extraction.text import TfidfTransformer,
CountVectorizer

vectorizer = CountVectorizer(stop words='english')
transformer = TfidfTransformer ()

# get frequency counts (sparse) matrix
freq matrix = vectorizer.fit transform(data)

# get TFIDF (sparse) matrix; Note: uses tf*(1+idf), not previous formula
tfidf matrix = transformer.fit transform(freq matrix)

38




