15-388/688 - Practical Data Science:
Deep learning

J. Zico Kolter
Carnegie Mellon University
Fall 2016

Announcements

Tutorial evaluations due tonight (I never actually specified a late policy

here, so we’ll allow late days, but | recommend you don’t use them for
this)

I’'m traveling next Monday, will have guest lecture (likely on some topic
related to interactive data visualization, details will be posted when they
are finalized)

Policy on final project midterm reports posted to Piazza

Outline

Recent history in machine learning
Machine learning with neural networks
Training neural networks

Specialized neural network architectures

Deep learning in data science

Outline

Recent history in machine learning

Recent history in machine learning

0.6

#neural network / #machine learning

0.5

0.4

0.3F

0.2

0.1

0.0
1980

Popularization of backprop
for training neural networks

|

1985 1990

Academic papers on unsupervised
pre-training for deep networks

1995

Facebook launches Al research
center, Google buys DeepMind

“AlexNet” deep neural network
wins ImageNet 2012 contest

N\

2000 2005 2010 2015

AlexNet

BN
3}> X 3
NN R A 3]
- — - 2578 >o0a8 \dense
i3 13 13
2
_____ he ENER 3’ I o Y >
u 3’ R - 13 dense | |[dense
1000
192 192 e Max - Tm som
Vs - Max pooling 2048
pooling pooling

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012
competition with a Top-5 error rate of 15.3% (next best system with highly
engineered features based got 26.1% error)

ImageNet classification

mite container ship motor scooter leopard
mite container ship motor scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
. o — ' g

| . = % wk : :

grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirfrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

AlphaGo

Artificial intelligence: Google's AlphaGo
beats Go master Lee Se-dol

®© 12 March 2016 Technology

8, e * LEE SEDOL
% %8 gee b |- 00:00:27

AlRnaGo

Outline

Machine learning with neural networks

Neural networks for machine learning

The term “neural network” largely refers to the hypothesis class part of a
machine learning algorithm:

1.

Hypothesis: non-linear hypothesis function, which involve
compositions of multiple linear operators (e.g. matrix multiplications)
and elementwise non-linear functions

Loss: “Typical”’ loss functions for classification and regression:
logistic, softmax (multiclass logistic), hinge, squared error, absolute
error

Optimization: Gradient descent, or more specifically, a variant called
stochastic gradient descent we will discuss shortly

10

Linear hypotheses and feature learning

Until now, we have (mostly) considered machine learning algorithms that
linear hypothesis class
hy(x) = 0" ¢()

where ¢: R™ — R* denotes some set of typically non-linear features

Example: polynomials, radial basis functions, custom features like TFIDF
(in many domains every 10 years or so there would be new feature types)

The performance of these algorithms depends crucially on coming up
with good features

Key question: can we come up with an algorithm that will automatically
learn the features themselves”?

11

Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage hypothesis
class where one linear function creates the features and another
produces the final hypothesis

hg(x) = Wod(x) + by = Wy (Wix +by) + by

where
0 ={W, € R*" b, € R¥ W, € RY** b, € R}

By convention, we’re going to separate out the “constant feature” into the

b terms

12

Issue with linear feature learning

We can depict the above network graphically using the following figure

But there is a problem:

l.e., we are still just using a linear classifier (the apparent added
complexity is actually not changing the underlying hypothesis function)

13

Neural networks

Neural networks are a simple extension of this idea, where we additionally
apply a non-linear function after each linear transformation

hg(x) = fo(Wofi(Wix +by) + by)

where f{, fo: IR — R are a non-linear function (applied elementwise)

Common choices of f;:

Hyperbolic tangent: f(z) = tanh(z) = & oo / |

-4 -3-2-10 1 2 3 4

0.8
0.6

Sigmoid: f(z) = o(z) = = |

0Qe—r—._ . . .
-4 -3 -2-10 1 2 3 4 4.0 ; ; ‘re“lu‘ T T

3.5}

Rectified linear unit (ReLU): f(x) = max{z,0} :

1.0

0.5

0.0 . . . ! L L
-4 -3-2-10 1 2 3 4

14

lllustrating neural networks

We draw neural networks using the same graphic as before (the non-
linear function are always in implied in the neural network setting)

Middle layer z is referred to as the hidden layer or activations

These are the learned features, nothing in the data prescribed what
values they should take, left up to algorithm to decide

15

Properties of neural networks

A neural network will a single hidden layers (and enough hidden units) is a
universal function approximator, can approximate any function over inputs

In practice, not that relevant (similar to how polynomials can fit any
function), and the more important aspect is that they appear to work very
well in practice for many domains

The hypothesis hy(x) is not a convex function of parameters 6 =
{W_,b,}, so we have possibility of local optima

Architectural choices (how many layers, how they are connected, etc),
become important algorithmic design choices (i.e. hyperparameters)

16

Deep learning

“Deep learning” refers (almost always) to machine learning using neural
network models with multiple hidden layers

21 =

S

I

%

W17 bl

=

Z9

Z3

()

24

=

>

»

A

n
¥~

X

N

W27 b2

W3, b3

Hypothesis function for k-layer network
ziy1 = FiWiz; + b;),

(note the z; here refers to a vector, not an entry into vector)

21256,

W47 b4

he(z) = 2,

17

Why use deep networks

Motivation from circuit theory: many function can be represented
more efficiently using deep networks (e.g., parity function requires O(2™)

hidden units with single hidden layer, O(n) with O(logn) layers
« But not clear if deep learning really learns these types of network

Motivation from biology: brain appears to use multiple levels of
interconnected neurons

« But despite the name, the connection between neural networks
and biology is extremely weak

In practice: works much better for many domains
« Hard to argue with results

18

Training neural networks

Outline

19

Neural networks for machine learning

Hypothesis function: neural network

Loss function: “traditional” loss, e.g. logistic loss for binary classification:
U(hy(x),y) = log(1 + exp(—y - hy(z)))

Optimization: How do we solve the optimization problem
inimi O(ha () (%)
mml@mlze ; (9(33), Y)

Just use gradient descent as normal (or rather, a version called stochastic
gradient descent)

20

Stochastic gradient descent

Key challenge for neural networks: often have very large number of
samples, computing gradients can be computationally intensive.

Traditional gradient descent computes the gradient with respect to the
sum over all examples, then adjusts the parameters in this direction

6« 60—aV, Zé(he (29, y) =0 -« Z Vol (hg(z'D, y)
i=1 i=1

Alternative approach, stochastic gradient descent (SGD): adjust
parameters based upon just one sample

0 < 0—aVyl(hy(z),y?)

and then repeat these updates for all samples

21

Gradient descent vs. SGD

Gradient descent, repeat:
e Fori=1,...,m:
g\ Vgﬁ(hg(x“)), y')
» Update parameters:

9%9—()4?:9@
i=1

Stochastic gradient descent, repeat:
e Fori=1,...,m:
0 < 0 —Vol(hy(x'D),y"))

In practice, stochastic gradient descent uses a small collection of
samples, not just one, called a minibatch

22

Computing gradients: backpropagation

So, how do we compute the gradient Vol (hy(2'¥)),4()?

Remember 6 here denotes a set of parameters, so we’re really computing
gradients with respect to all elements of that set

This is accomplished via the backpropagation algorithm

We won’t cover the algorithm in detail, but backpropagation is just an
application of the (multivariate) chain rule from calculus, plus “caching”
intermediate terms that, for instance, occur in the gradient of both W}
and W

23

Training neural networks In practice

The other good news is also that you will rarely need to implement
backpropagation yourself

Many libraries provides methods for you to just specify the neural network
“forward” pass, and automatically compute the necessary gradients

Examples: Tensorflow, Torch, Caffe, MXNet, many others

We’ll use one of these a bit on the homework (if we can get it installed in
Autolab)

24

Outline

Specialized neural network architectures

25

Specialized architectures

Very little of the current wave of enthusiasm for deep learning has actually
come from the simple “fully connected” neural network model we have
seen so far

Instead, most of the excitement has come from two more specialized
architectures: convolutional neural networks, and recurrent neural
network

26

The problem with fully-connected networks

A 256x256 (RGB) image means ~200,000 dimensional input

Fully connected deep network would require a huge number of
parameters, very likely to overfit to data

A generic deep network also doesn’t capture of the the “natural”
invariances we expect in images (location, scale)

27

Convolutional neural networks

Constrain weights: require that activations in following layer be a “local”
function of previous layer, and share weights across all locations

Also common to use max-pooling layers that take maximum over region
i

Ri+1

max

28

Convolutional networks In practice

Actually common to use “3D” convolutions to combine multiple channels,
and use multiple convolutions at each layer to create different features

Zi

4’4
44

(Wi

Zi+1

Zi

4’4
44

RZi+1

(Wi)2

Convolutions are still linear operations, and we can take gradients using
backpropagation in much the same manner

29

Predicting sequential data

In practice, we often want to predict a sequence of outputs given a
sequence of inputs

Just predicting each output independently would miss crucial information

Many examples: time series forecasting, sentence labeling, part of speech
tagging, etc

30

Recurrent neural networks

Maintain state over time, activations are a function of current input and

previous activations

O
@JRUR
O

)

2

O
O

N

wi

wl

Wi

O
O

4

Wi

Recurrent neural networks in practice

Traditional RNNs have trouble capturing long-term dependencies

More typical to use a more complex hidden unit and activations, called a
long short term memory (LSTM) network

Figure from
(Jozefowicz
et al., 2015)

32

Deep learning in data science

Outline

33

Deep learning in data science
What role does deep learning have to play in data science?

Data problems we would like to solve

Solvable problems (50%) Unsolvable problems (50%)
Problems that can use “simple” Problems that need, e.g.

machine learning (49%) deep learning (1%)

34

Deep learning in data science
What role does deep learning have to play in data science?

Data problems we would like to solve

Solvable problems (50%) Unsolvable problems (50%)
Problems that can use “simple” Problems that need, e.g.

machine learning (49%) new deep learning (1%)

35

Solving data science problems with deep learning

When you come up against some machine learning problem with
“traditional” features (i.e., human-interpretable characteristics of the data)
do not try to solve it by applying deep learning methods first

Use linear regression/classification, linear regression/classification with
non-linear features, or gradient boosting methods instead

If these still don’t solve your problem and you can visualize the data in a
way that lets you solve it “manually”, or if you really want to squeeze out a
1-2% improvement in performance, then you can apply deep learning

36

The exceptions

However, it’s also undeniable that deep learning has made remarkable
progress for structured data like images, audio, or text

For these types of data, you can use an already trained network as a
feature extractor (i.e., a way of mapping the data to some alternatively,
probably lower dimensional representation)

37

Example: Image processing with VGG

VGG network (Simonyan and

ConvNet Confi g-uration

A ALRN B C D E ') i
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight leserman’ 201 5) tralned on
layers layers layers layers layers layers H o '
T TR ImageNet 1000-way classification
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 '
LRN conv3-64 | conv3-64 | conv3-64 | conv3-64 Of IMm ag es
maxpool

conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool

o g | oo | o e | o e | o e | oo e Given a new image classification
convl-256 | conv3-256 | conv3-256 .
S conv3-256 problem, take pre-trained VGG
e e e e I S network, take the last layer of
convl-512 | conv3-512 | conv3-512 f
- conv3-512 weights, and use them as features

conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512

raspool comd 512 Can also “finetune” last few layers
FC-4096 . .

B e of a network to specialize to a new
soft-max task

38

Example: text processing with word2vec

Input

projection

output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

word2vec (Mikolov, et al., 2013) is
a method developed for predicting
surrounding words from a given
word

To do so, it creates an
“embedding” for every word that
acts as a good surrogate for the
things this word can mean, pre-
trained versions available

Bottom line: instead of using bag
of words, use word2vec to get a

vector representation of each word
IN a corpus

39

