
15-388/688 - Practical Data Science:
Deep learning

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Announcements

Tutorial evaluations due tonight (I never actually specified a late policy
here, so we’ll allow late days, but I recommend you don’t use them for
this)

I’m traveling next Monday, will have guest lecture (likely on some topic
related to interactive data visualization, details will be posted when they
are finalized)

Policy on final project midterm reports posted to Piazza

2

Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

3

Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

4

Recent history in machine learning

5

Popularization of backprop
for training neural networks

Academic papers on unsupervised
pre-training for deep networks

“AlexNet” deep neural network
wins ImageNet 2012 contest

Facebook launches AI research
center, Google buys DeepMind

AlexNet

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012
competition with a Top-5 error rate of 15.3% (next best system with highly
engineered features based got 26.1% error)

6

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

ImageNet classification

7

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

AlphaGo

8

Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

9

Neural networks for machine learning

The term “neural network” largely refers to the hypothesis class part of a
machine learning algorithm:

1. Hypothesis: non-linear hypothesis function, which involve
compositions of multiple linear operators (e.g. matrix multiplications)
and elementwise non-linear functions

2. Loss: “Typical” loss functions for classification and regression:
logistic, softmax (multiclass logistic), hinge, squared error, absolute
error

3. Optimization: Gradient descent, or more specifically, a variant called
stochastic gradient descent we will discuss shortly

10

Linear hypotheses and feature learning

Until now, we have (mostly) considered machine learning algorithms that
linear hypothesis class

ℎ" 𝑥 = 𝜃% 𝜙 𝑥

where 𝜙: ℝ(→ ℝ* denotes some set of typically non-linear features

Example: polynomials, radial basis functions, custom features like TFIDF
(in many domains every 10 years or so there would be new feature types)

The performance of these algorithms depends crucially on coming up
with good features

Key question: can we come up with an algorithm that will automatically
learn the features themselves?

11

Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage hypothesis
class where one linear function creates the features and another
produces the final hypothesis

ℎ" 𝑥 = 𝑊2𝜙 𝑥 + 𝑏2 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2

where
𝜃 = 𝑊1 ∈ ℝ*×(, 𝑏1 ∈ ℝ*, 𝑊2 ∈ ℝ1×*, 𝑏2 ∈ ℝ

By convention, we’re going to separate out the “constant feature” into the
𝑏 terms

12

Issue with linear feature learning

We can depict the above network graphically using the following figure

But there is a problem:
ℎ" 𝑥 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2 = 𝑊̃𝑥 + 𝑏̃

i.e., we are still just using a linear classifier (the apparent added
complexity is actually not changing the underlying hypothesis function)

13

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2

Neural networks

Neural networks are a simple extension of this idea, where we additionally
apply a non-linear function after each linear transformation

ℎ" 𝑥 = 𝑓2 𝑊2𝑓1 𝑊1𝑥 + 𝑏1 + 𝑏2

where 𝑓1, 𝑓2: ℝ → ℝ are a non-linear function (applied elementwise)

Common choices of 𝑓4:

14

Hyperbolic tangent: 𝑓 𝑥 = tanh 𝑥 = 𝑒2𝑥−1
𝑒2𝑥+1

Sigmoid: 𝑓 𝑥 = 𝜎 𝑥 = 1
1+𝑒−𝑥

Rectified linear unit (ReLU): 𝑓 𝑥 = max 𝑥, 0

Illustrating neural networks

We draw neural networks using the same graphic as before (the non-
linear function are always in implied in the neural network setting)

Middle layer 𝑧 is referred to as the hidden layer or activations

These are the learned features, nothing in the data prescribed what
values they should take, left up to algorithm to decide

15

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2

Properties of neural networks

A neural network will a single hidden layers (and enough hidden units) is a
universal function approximator, can approximate any function over inputs

In practice, not that relevant (similar to how polynomials can fit any
function), and the more important aspect is that they appear to work very
well in practice for many domains

The hypothesis ℎ" 𝑥 is not a convex function of parameters 𝜃 =
{𝑊4, 𝑏4}, so we have possibility of local optima

Architectural choices (how many layers, how they are connected, etc),
become important algorithmic design choices (i.e. hyperparameters)

16

Deep learning

“Deep learning” refers (almost always) to machine learning using neural
network models with multiple hidden layers

Hypothesis function for 𝑘-layer network
𝑧4+1 = 𝑓4 𝑊4𝑧4 + 𝑏4 , 𝑧1 = 𝑥, ℎ" 𝑥 = 𝑧*

(note the 𝑧4 here refers to a vector, not an entry into vector)

17

z1 = x

...
...

W1, b1

z5... ...

z2 z3 z4

W3, b3

W4, b4

= hθ(x)

W2, b2

Why use deep networks

Motivation from circuit theory: many function can be represented
more efficiently using deep networks (e.g., parity function requires 𝑂(2()
hidden units with single hidden layer, 𝑂 𝑛 with 𝑂(log 𝑛) layers

• But not clear if deep learning really learns these types of network

Motivation from biology: brain appears to use multiple levels of
interconnected neurons

• But despite the name, the connection between neural networks
and biology is extremely weak

In practice: works much better for many domains
• Hard to argue with results

18

Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

19

Neural networks for machine learning

Hypothesis function: neural network

Loss function: “traditional” loss, e.g. logistic loss for binary classification:
ℓ ℎ" 𝑥 , 𝑦 = log 1 + exp −𝑦 ⋅ ℎ" 𝑥

Optimization: How do we solve the optimization problem

minimize
"

∑ ℓ ℎ" 𝑥 4 , 𝑦 4
@

4=1

Just use gradient descent as normal (or rather, a version called stochastic
gradient descent)

20

Stochastic gradient descent

Key challenge for neural networks: often have very large number of
samples, computing gradients can be computationally intensive.

Traditional gradient descent computes the gradient with respect to the
sum over all examples, then adjusts the parameters in this direction

𝜃 ← 𝜃 − 𝛼∇" ∑ ℓ(ℎ" 𝑥 4 , 𝑦 4 = 𝜃 − 𝛼 ∑ ∇"ℓ(ℎ" 𝑥 4 , 𝑦 4
@

4=1

@

4=1

Alternative approach, stochastic gradient descent (SGD): adjust
parameters based upon just one sample

𝜃 ← 𝜃 − 𝛼𝛻"ℓ ℎ" 𝑥 4 , 𝑦 4

and then repeat these updates for all samples

21

Gradient descent vs. SGD

Gradient descent, repeat:
• For 𝑖 = 1,… , 𝑚:

𝑔 4 ← 𝛻"ℓ ℎ" 𝑥 4 , 𝑦 4

• Update parameters:

𝜃 ← 𝜃 − 𝛼 ∑ 𝑔 4
@

4=1

Stochastic gradient descent, repeat:
• For 𝑖 = 1,… , 𝑚:

𝜃 ← 𝜃 − 𝛻"ℓ ℎ" 𝑥 4 , 𝑦 4

In practice, stochastic gradient descent uses a small collection of
samples, not just one, called a minibatch

22

Computing gradients: backpropagation

So, how do we compute the gradient 𝛻"ℓ ℎ" 𝑥 4 , 𝑦 4 ?

Remember 𝜃 here denotes a set of parameters, so we’re really computing
gradients with respect to all elements of that set

This is accomplished via the backpropagation algorithm

We won’t cover the algorithm in detail, but backpropagation is just an
application of the (multivariate) chain rule from calculus, plus “caching”
intermediate terms that, for instance, occur in the gradient of both 𝑊1
and 𝑊2

23

Training neural networks in practice

The other good news is also that you will rarely need to implement
backpropagation yourself

Many libraries provides methods for you to just specify the neural network
“forward” pass, and automatically compute the necessary gradients

Examples: Tensorflow, Torch, Caffe, MXNet, many others

We’ll use one of these a bit on the homework (if we can get it installed in
Autolab)

24

Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

25

Specialized architectures

Very little of the current wave of enthusiasm for deep learning has actually
come from the simple “fully connected” neural network model we have
seen so far

Instead, most of the excitement has come from two more specialized
architectures: convolutional neural networks, and recurrent neural
network

26

The problem with fully-connected networks

A 256x256 (RGB) image means ~200,000 dimensional input

Fully connected deep network would require a huge number of
parameters, very likely to overfit to data

A generic deep network also doesn’t capture of the the “natural”
invariances we expect in images (location, scale)

27

zi
zi+1

(Wi)1

zi
zi+1

(Wi)2

Convolutional neural networks

Constrain weights: require that activations in following layer be a “local”
function of previous layer, and share weights across all locations

Also common to use max-pooling layers that take maximum over region

28

zi
zi+1

Wi

zi
zi+1

Wi

zi
zi+1

max

Convolutional networks in practice

Actually common to use “3D” convolutions to combine multiple channels,
and use multiple convolutions at each layer to create different features

Convolutions are still linear operations, and we can take gradients using
backpropagation in much the same manner

29

zi
zi+1

(Wi)1

zi
zi+1

(Wi)2

Predicting sequential data

In practice, we often want to predict a sequence of outputs given a
sequence of inputs

Just predicting each output independently would miss crucial information

Many examples: time series forecasting, sentence labeling, part of speech
tagging, etc

30

Recurrent neural networks

Maintain state over time, activations are a function of current input and
previous activations

31

z(1)1 z(2)1 z(3)1

z(1)3 z(2)3 z(3)3

z(1)2 z(2)2 z(3)2

· · ·

W1 W1 W1

W2

Wh
1 Wh

1 Wh
1

W2 W2

𝑧4+1
H = 𝑓4 𝑊4𝑥 H + 𝑊4

ℎ𝑧 H−1 + 𝑏4

ℎ" 𝑥 H = 𝑧*
H

Recurrent neural networks in practice

Traditional RNNs have trouble capturing long-term dependencies

More typical to use a more complex hidden unit and activations, called a
long short term memory (LSTM) network

32

Evolving Recurrent Neural Network Architectures

Figure 1. The LSTM architecture. The value of the cell is in-
creased by it�jt, where � is element-wise product. The LSTM’s
output is typically taken to be ht, and ct is not exposed. The for-
get gate ft allows the LSTM to easily reset the value of the cell.

we can close the gap between the LSTM and the better ar-
chitectures. Thus, we recommend to increase the bias to
the forget gate before attempting to use more sophisticated
approaches.

We also performed ablative experiments to measure the im-
portance of each of the LSTM’s many components. We dis-
covered that the input gate is important, that the output gate
is unimportant, and that the forget gate is extremely signif-
icant on all problems except language modelling. This is
consistent with Mikolov et al. (2014), who showed that a
standard RNN with a hard-coded integrator unit (similar to
an LSTM without a forget gate) can match the LSTM on
language modelling.

2. Long Short-Term Memory
In this section, we briefly explain why RNNs can be dif-
ficult to train and how the LSTM addresses the vanishing
gradient problem.

Standard RNNs suffer from both exploding and vanishing
gradients (Hochreiter, 1991; Bengio et al., 1994). Both
problems are caused by the RNN’s iterative nature, whose
gradient is essentially equal to the recurrent weight matrix
raised to a high power. These iterated matrix powers cause
the gradient to grow or to shrink at a rate that is exponential
in the number of timesteps.

The exploding gradients problem is relatively easy to
handle by simply shrinking gradients whose norms ex-
ceed a threshold, a technique known as gradient clipping
(Mikolov, 2012; Pascanu et al., 2012). While learning
would suffer if the gradient is reduced by a massive fac-

tor too frequently, gradient clipping is extremely effective
whenever the gradient has a small norm the majority of the
time.

The vanishing gradient is more challenging because it does
not cause the gradient itself to be small; while the gradi-
ent’s component in directions that correspond to long-term
dependencies is small, while the gradient’s component in
directions that correspond to short-term dependencies is
large. As a result, RNNs can easily learn the short-term
but not the long-term dependencies.

The LSTM addresses the vanishing gradient problem by
reparameterizing the RNN. Thus, while the LSTM does
not have a representational advantage, its gradient cannot
vanish. In the discussion that follows, let S

t

denote a hid-
den state of an unspecified RNN architecture. The LSTM’s
main idea is that, instead of computing S

t

from S

t�1

di-
rectly with a matrix-vector product followed by a nonlin-
earity, the LSTM directly computes �S

t

, which is then
added to S

t�1

to obtain S

t

. At first glance, this difference
may appear insignificant since we obtain the same S

t

in
both cases. And it is true that computing �S

t

and adding
it to S

t

does not result in a more powerful model. How-
ever, just like a tanh-based network has better-behaved gra-
dients than a sigmoid-based network, the gradients of an
RNN that computes �S

t

are nicer as well, since they can-
not vanish.

More concretely, suppose that we run our architecture for
1000 timesteps to compute S

1000

, and suppose that we wish
to classify the entire sequence into two classes using S

1000

.
Given that S

1000

=

P
1000

t=1

�S

t

, every single �S

t

(in-
cluding �S

1

) will receive a sizeable contribution from the
gradient at timestep 1000. This immediately implies that
the gradient of the long-term dependencies cannot vanish.
It may become “smeared”, but it will never be negligibly
small.

The full LSTM’s definition includes circuitry for comput-
ing �S

t

and circuitry for decoding information from S

t

.
Unfortunately, different practitioners use slightly different
LSTM variants. In this work, we use the LSTM architec-
ture that is precisely specified below. It is similar to the
architecture of Graves (2013) but without peep-hole con-
nections:

i

t

= tanh(W

xi

x

t

+W

hi

h

t�1

+ b

i

)

j

t

= sigm(W

xj

x

t

+W

hj

h

t�1

+ b

j

)

f

t

= sigm(W

xf

x

t

+W

hf

h

t�1

+ b

f

)

o

t

= tanh(W

xo

x

t

+W

ho

h

t�1

+ b

o

)

c

t

= c

t�1

� f

t

+ i

t

� j

t

h

t

= tanh(c

t

)� o

t

In these equations, the W⇤ variables are the weight matri-
ces and the b⇤ variables are the biases. The operation �

Figure from
(Jozefowicz
et al., 2015)

Outline

Recent history in machine learning

Machine learning with neural networks

Training neural networks

Specialized neural network architectures

Deep learning in data science

33

Deep learning in data science

What role does deep learning have to play in data science?

34

Data problems we would like to solve

Unsolvable problems (50%)Solvable problems (50%)

Problems that need, e.g.
deep learning (1%)

Problems that can use “simple”
machine learning (49%)

Deep learning in data science

What role does deep learning have to play in data science?

35

Data problems we would like to solve

Unsolvable problems (50%)Solvable problems (50%)

Problems that need, e.g.
new deep learning (1%)

Problems that can use “simple”
machine learning (49%)

Solving data science problems with deep learning

When you come up against some machine learning problem with
“traditional” features (i.e., human-interpretable characteristics of the data)
do not try to solve it by applying deep learning methods first

Use linear regression/classification, linear regression/classification with
non-linear features, or gradient boosting methods instead

If these still don’t solve your problem and you can visualize the data in a
way that lets you solve it “manually”, or if you really want to squeeze out a
1-2% improvement in performance, then you can apply deep learning

36

The exceptions

However, it’s also undeniable that deep learning has made remarkable
progress for structured data like images, audio, or text

For these types of data, you can use an already trained network as a
feature extractor (i.e., a way of mapping the data to some alternatively,
probably lower dimensional representation)

37

Example: Image processing with VGG

VGG network (Simonyan and
Zisserman, 2015), trained on
ImageNet 1000-way classification
of images

Given a new image classification
problem, take pre-trained VGG
network, take the last layer of
weights, and use them as features

Can also “finetune” last few layers
of a network to specialize to a new
task

38

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

Example: text processing with word2vec

word2vec (Mikolov, et al., 2013) is
a method developed for predicting
surrounding words from a given
word

To do so, it creates an
“embedding” for every word that
acts as a good surrogate for the
things this word can mean, pre-
trained versions available

Bottom line: instead of using bag
of words, use word2vec to get a
vector representation of each word
in a corpus

39

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

