
15-388/688 - Practical Data Science:
Decision trees and boosting

J. Zico Kolter
Carnegie Mellon University

Fall 2016

1

Outline

Decision trees

Training (classification) decision trees

Boosting

Examples

2

Announcements

HW4 due tonight

Misplaced parenthesis in Python SVM code in slides (pg 26), apologies

We will send feedback on tutorial mid-way report by tomorrow (Thursday)
night (this will be a brief review)

Tutorial submission for K-means is due by Monday

3

Outline

Decision trees

Training (classification) decision trees

Boosting

Examples

4

Overview

Decision trees and boosted decision trees are some of the most
ubiquitous algorithms in data science

Boosted decision trees typically perform very well without much tuning
(the majority of Kaggle contests, for instance, are won with boosting
methods)

Decision trees, while not as powerful from a pure ML standpoint, are still
one of the canonical examples of an “understandable” ML algorithm

5

Decision trees

Decision trees were one of the first machine learning algorithms

Basic idea: make classification/regression predictions by tracing through
rules in a tree, with a constant prediction at each leaf node

6

x2 ≥ 2

x1 ≥ 2

x2 ≥ 3

h1 = 0.1 h2 = 0.7 x1 ≥ 3 h3 = 0.8

h4 = 0.9 h5 = 0.2

Partitioning the input space

You can think of the hypothesis function of decision trees as partitioning
the input space with axis-aligned boundaries

In each partition, predict a constant value

7

h2

h1

h3

h4 h5

x2 ≥ 2

x1 ≥ 2

x2 ≥ 3

h1 = 0.1 h2 = 0.7 x1 ≥ 3 h3 = 0.8

h4 = 0.9 h5 = 0.2 x1

x2

Partitioning the input space

You can think of the hypothesis function of decision trees as partitioning
the input space with axis-aligned boundaries

In each partition, predict a constant value

8

h2

h1

h3

h4 h5

x2 ≥ 2

x1 ≥ 2

x2 ≥ 3

h1 = 0.1 h2 = 0.7 x1 ≥ 3 h3 = 0.8

h4 = 0.9 h5 = 0.2 x1

x2

Partitioning the input space

You can think of the hypothesis function of decision trees as partitioning
the input space with axis-aligned boundaries

In each partition, predict a constant value

9

h2

h1

h3

h4 h5

x2 ≥ 2

x1 ≥ 2

x2 ≥ 3

h1 = 0.1 h2 = 0.7 x1 ≥ 3 h3 = 0.8

h4 = 0.9 h5 = 0.2 x1

x2

Partitioning the input space

You can think of the hypothesis function of decision trees as partitioning
the input space with axis-aligned boundaries

In each partition, predict a constant value

10

h2

h1

h3

h4 h5

x2 ≥ 2

x1 ≥ 2

x2 ≥ 3

h1 = 0.1 h2 = 0.7 x1 ≥ 3 h3 = 0.8

h4 = 0.9 h5 = 0.2 x1

x2

Outline

Decision trees

Training (classification) decision trees

Boosting

Examples

11

Decision trees as ML algorithms

To specify the decision trees from a machine learning standpoint, we
need to specify

1. What is the hypothesis function ℎ" 𝑥 ?

2. What is the loss function ℓ ℎ" 𝑥 , 𝑦 ?

3. How do we minimize the loss function?

minimize
"

 1
𝑚 ∑ ℓ(ℎ" 𝑥 (, 𝑦 ()

)

(=1

12

Decision trees as ML algorithms

To specify the decision trees from a machine learning standpoint, we
need to specify

1. What is the hypothesis function 𝒉, 𝒙 ?

2. What is the loss function ℓ ℎ" 𝑥 , 𝑦 ?

3. How do we minimize the loss function?

minimize
"

 1
𝑚 ∑ ℓ(ℎ" 𝑥 (, 𝑦 ()

)

(=1

13

…a decision tree (𝜃 is
shorthand for all the
parameters that define
the tree: tree structure,
values to split on, leaf
predictions, etc)

Decision trees as ML algorithms

To specify the decision trees from a machine learning standpoint, we
need to specify

1. What is the hypothesis function ℎ" 𝑥 ?

2. What is the loss function ℓ 𝒉, 𝒙 , 𝒚 ?

3. How do we minimize the loss function?

minimize
"

 1
𝑚 ∑ ℓ(ℎ" 𝑥 (, 𝑦 ()

)

(=1

14

Loss functions in decision trees

Let’s assume the output is binary for now (classification task, we will deal
with regression shortly), and assume 𝑦 ∈ 0,1

The typical decision tree algorithm using a probabilistic loss function that
considers 𝑦 to be a Bernoulli random variable with probability ℎ"(𝑥)

𝑝 𝑦 ℎ" 𝑥 = ℎ" 𝑥 2 1 − ℎ" 𝑥 1−2

The loss function is just the negative log probability of the output (like in
maximum likelihood estimation)

ℓ ℎ" 𝑥 , 𝑦 = − log 𝑝 𝑦 ℎ" 𝑥
 = −𝑦 log ℎ" 𝑥 − 1 − 𝑦 log 1 − ℎ" 𝑥

15

Decision trees as ML algorithms

To specify the decision trees from a machine learning standpoint, we
need to specify

1. What is the hypothesis function ℎ" 𝑥 ?

2. What is the loss function ℓ ℎ" 𝑥 , 𝑦 ?

3. How do we minimize the loss function?

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
,

𝟏
𝒎 ∑ ℓ(𝒉, 𝒙 ; , 𝒚 ;)

<

;==

16

Optimizing decision trees

Key challenge: unlike models we have considered previously, discrete tree
structure means there are no gradients

Additionally, even if we assume binary inputs i.e., 𝑥 ∈ 0,1 >, there are
22@ possible decision trees: 𝑛 = 7 means 3.4×1038 possible trees

Instead, we’re going to use greedy methods to incrementally build the
tree (i.e., minimize the loss function) one node at a time

17

Optimizing a single leaf

Consider a single leaf in a decision tree (could be root of initial tree)

Let 𝒳 denote the examples at this leaf (e.g., in this partition), where 𝒳+

denotes the positive examples and 𝒳− denotes negative (zero) examples

What should we choose as the (constant) prediction ℎ at this leaf?

minimize
ℎ

 1
𝒳 ∑ ℓ ℎ, 𝑦

�

G,2∈I
 = − 𝒳+

𝒳 log ℎ − 𝒳−

𝒳 log(1 − ℎ)

⟹ ℎ = 𝒳+

𝒳 ,

Which achieves loss:
ℓ = −ℎ log ℎ − (1 − ℎ) log(1 − ℎ)

18

Optimizing splits

Now suppose we want to split this leaf into two leaves, assuming for the
time being that 𝑥 ∈ 0,1 > is binary

If we split on a given feature 𝑗, this will separate 𝒳 into two sets: 𝒳0 and
𝒳1 (with 𝒳0/1

+/− and defined similarly to before), and we would choose
optimal prediction ℎ0 = 𝒳0

+ / 𝒳0 , ℎ1 = 𝒳1
+ / 𝒳1

19

X

xj = 1xj = 0

X0

h0 =
|X+

0 |
|X0|

X1

h1 =
|X+

1 |
|X1|

Loss of split

The new leafs will each now suffer loss
ℓ0 = −ℎ0 log ℎ0 − 1 − ℎ0 log 1 − ℎ0
ℓ1 = −ℎ1 log ℎ1 − 1 − ℎ1 log 1 − ℎ1

Thus, if we split the original leaf on feature 𝑗, we no longer suffer our
original loss ℓ, but we do suffer losses ℓ1 + ℓ2, i.e., we have decreased
the overall loss function by ℓ0 + ℓ1 − ℓ (this quantity is called
information gain)

Greedy decision tree learning – repeat:
• For all leaf nodes, evaluate information gain (i.e., decrease in loss)

when splitting on each feature 𝑗
• Split the node/feature that minimizes loss the most
• (Run cross-validation to determine when to stop, or after N nodes)

20

Continuous features

What if 𝑥M’s are continuous?

Solution: sort the examples by their 𝑥M values, compute information gain
at each possible split point

21

xj
x(i1)j x(i2)j x(i3)j x(i4)j x(i5)j x(i6)j x(i7)j

𝒳0 𝒳1𝒳0 𝒳1

Regression trees

Regression trees are the same, except that the hypothesis ℎ are real-
valued instead of probabilities, and we use squared loss

ℓ ℎ, 𝑦 = ℎ − 𝑦 2

This means that the loss a node is given by

minimize
ℎ

 1
𝒳 ∑ ℎ − 𝑦 2

�

G,2∈I
 ⟹ ℎ = 1

𝒳 ∑ 𝑦
�

G,2∈I
 (i. e.mean)

and suffers loss

ℓ = 1
𝒳 ∑ 𝑦 − ℎ 2

�

G,2∈I
 (i. e. variance)

22

Outline

Decision trees

Training (classification) decision trees

Boosting

Examples

23

Ensembles of trees

Decision trees have notable advantages (they are relatively easy to
interpret, usually fast to train, insensitive to scale of input features)

But, they are also quite limited in their representation power (require axis-
aligned splits, don’t model probabilities very smoothly)

Basic idea of tree ensemble methods is to combine multiple tree models
together to form a better predictor

Two of the most popular ensemble methods: random forests and
boosting

24

Boosting

Boosting originated as an idea in theoretical machine learning, for
“boosting” the performance of weak classifiers (i.e., combining many
classifiers that each had modest accuracy to one that had high accuracy)

After some initial success in theory, during the 90s there came to be
several practical applications of boosting methods

There are many interpretations of boosting (experts still disagree on the
“right” one!), and I’m going to highlight one:

We focus on the Gradient Boosted Regression Trees (GBRT) algorithm

25

Machine learning with general predictions

Let’s consider the basic machine learning optimization problem (could be
any loss function, classification or regression)

minimize
"

 ∑ ℓ(𝑦 ̂ (, 𝑦 ()
)

(=1

where 𝑦 ̂ (denotes our prediction for the 𝑖th example

The gradient with respect to these predictions themselves to determine
the best way to adjust our predictions (ignoring whether we have any
hypothesis function that could actually change the predictions in this way)

𝜕
𝜕𝑦 ̂ (ℓ 𝑦 ̂ (, 𝑦 (

26

Some examples of prediction gradients

We can compute gradients with respect to the predictions for all our
usually loss functions (they are actually easier to compute than gradients
with respect to parameters)

Logistic loss:
ℓlogistic 𝑦,̂ 𝑦 = log 1 + exp −𝑦̂ ⋅ 𝑦
𝜕
𝜕𝑦 ̂ ℓlogistic 𝑦,̂ 𝑦 = −𝑦

1 + exp 𝑦 ̂ ⋅ 𝑦
Squared loss:

ℓsquared 𝑦,̂ 𝑦 = 1
2 𝑦 ̂ − 𝑦 2

𝜕
𝜕𝑦 ̂ℓsquared 𝑦,̂ 𝑦 = (𝑦 ̂ − 𝑦)

27

Basic idea of GBRTs

Basic idea: GBRTs are effectively performing gradient descent on our
loss function, using regression trees to approximate the gradient

28

Given: Data set 𝑥 (, 𝑦 (
(=1,…,), # trees 𝑇 , loss ℓ, step size 𝛼

Initialize:
𝑦 ̂ (← 0, ∀ 𝑖 = 1,… , 𝑚

For 𝑡 = 1,… , 𝑇 :
Compute gradients:

𝑔e
(← f

f2̂ ℓ 𝑦 ̂ (, 𝑦 (, ∀ 𝑖 = 1,… , 𝑚
ℎe ← Train − Regression − Tree 𝑥 1,…,) , 𝑔e

1,…,)

Update predictions:
𝑦 ̂ (← 𝑦̂ (− 𝛼ℎe 𝑥 (

For new data point 𝑥:
Predict: 𝑦 ̂ = −𝛼 ∑ ℎe 𝑥 (h

(=1

GBRTs a bit more practically

In practice, fitting the trees is slow, so we actually do a line search to
determine how large of a gradient step to take

Can take different gradient steps at different leaves in tree

Here you probably want to use a library (you could write your own
implementation, but it would be about ~100 lines of code, not ~5 like for
an SVM)

29

Outline

Decision trees

Training (classification) decision trees

Boosting

Examples

30

Decision trees and GBRTs in scikit-learn

Interface for decision trees and GBRTs in scikit-learn is just like any other
classifier

31

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(criterion='entropy', max_depth=5)
clf.fit(X, y)

from sklearn.ensemble import GradientBoostingClassifier

clf = GradientBoostingClassifier(loss='deviance',
max_depth=3, n_estimators=100)

clf.fit(X, y)

Decision tree surface for cancer prediction

32

GBRT surface for cancer prediction

33

