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Announcements

Tutorial due tonight (max 2 late days, pushing it until Friday)

HW4 to be released tonight

Feedback on project proposals will be out tomorrow
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What is an “anomaly”

Two views of anomaly detection

Supervised view: anomalies are what some user labels as anomalies

Unsupervised view: anomalies are outliers (points of low probability) in 
the data

In reality, you want a combination of both these viewpoints: not all outliers 
are anomalies, but all anomalies should be outliers

This lecture is going to focus on the unsupervised view, but this is only 
part of the full equation
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What is an outlier?

Outliers are points of low probability

Given a collection of data points 𝑥 1 ,… , 𝑥 # , describe the points using 
some distribution, then find points with lowest 𝑝 𝑥 %

Since we are considering points with no labels, this is an unsupervised
learning algorithm (could formulate in terms of hypothesis, loss, 
optimization, but instead for this lecture we’ll be focusing on the 
probabilistic notation)
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Multivariate Gaussian distributions

We have seen Gaussian distributions previously, but mainly focused on 
distributions over scalar-valued data 𝑥 % ∈ ℝ

𝑝 𝑥; 𝜇, 𝜎2 = 2𝜋𝜎2 −1/2 exp − 𝑥 − 𝜇 2

2𝜎2

Gaussian distributions generalize nicely to distributions over vector-valued 
random variables 𝑋 taking values in ℝ.

𝑝 𝑥; 𝜇, Σ = 2𝜋Σ −1/2 exp − 1
2 𝑥 − 𝜇 0 Σ−1 𝑥 − 𝜇

             ≡ 𝒩 𝑥; 𝜇, Σ
with parameters 𝜇 ∈ ℝ. and Σ ∈ ℝ.×., and were ⋅ denotes the 
determinant of a matrix (also written 𝑋 ∼ 𝒩 𝜇, Σ )
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Properties of multivariate Gaussians

Mean and variance

𝐄 𝑋 = ∫ 𝑥𝒩 𝑥; 𝜇, Σ 𝑑𝑥 = 𝜇
�

ℝ9

𝐂𝐨𝐯 𝑋 = ∫ 𝑥 − 𝜇 𝑥 − 𝜇 0 𝒩 𝑥; 𝜇, Σ 𝑑𝑥 = Σ
�

ℝ9

(these are not obvious)

Creation from univariate Gaussians: for 𝑥 ∈ ℝ, if 𝑝 𝑥% = 𝒩 𝑥; 0,1 (i.e., 
each element 𝑥% is an independent univariate Gaussian, then 𝑦 = 𝐴𝑥 + 𝑏
is also normal, with distribution

𝑌 ∼ 𝒩 𝜇 = 𝑏, Σ = 𝐴𝐴0
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Multivariate Gaussians, graphically
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Multivariate Gaussians, graphically
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Multivariate Gaussians, graphically
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Multivariate Gaussians, graphically
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Multivariate Gaussians, graphically
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Maximum likelihood estimation

The maximum likelihood estimate of 𝜇, Σ are what you would “expect”, 
but derivation is non-obvious

minimize
A,Σ

 ℓ 𝜇, Σ = ∑ log 𝑝(𝑥 % ; 𝜇, Σ)
#

%=1

                      = ∑ − 1
2 log 2𝜋Σ − 1

2 𝑥 % − 𝜇 0 Σ−1 𝑥 % − 𝜇
#

%=1

Taking gradients with respect to 𝜇 and Σ and setting equal to zero give 
the closed-form solutions

𝜇 = 1
𝑚 ∑ 𝑥 %

#

%=1
,  Σ = 1

𝑚 ∑ 𝑥 % − 𝜇 𝑥 % − 𝜇 0
#

%=1

12



Fitting Gaussian to MNIST
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𝜇 = Σ =



MNIST Outliers
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Limits of Gaussians

Though useful, multivariate Gaussians are limited in the types of 
distributions they can represent
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Mixture models

A more powerful model to consider is a mixture of Gaussian distributions, 
a distribution where we first consider a categorical variable

𝑍 ∼ Categorical 𝜙 , 𝜙 ∈ 0,1 I, ∑ 𝜙% = 1 
�

%
i.e., 𝑧 takes on values 1,… , 𝑘

For each potential value of 𝑍, we consider a separate Gaussian 
distribution:

𝑋|𝑍 = 𝑧 ∼ 𝒩 𝜇 L , Σ L , 𝜇 L ∈ ℝ., Σ L ∈ ℝ.×.

Can write the distribution of 𝑋 using marginalization
𝑝 𝑋 = ∑ 𝑝 𝑋 𝑍 = 𝑧 𝑝(𝑍 = 𝑧)

�

L
= ∑ 𝒩 𝑥; 𝜇 L , Σ L 𝜙L

�

L
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Learning mixture models

To estimate parameters, suppose first that we can observe both 𝑋 and 
𝑍, i.e., our data set is of the form 𝑥 % , 𝑧 % , 𝑖 = 1,… , 𝑚

In this case, we can maximize the log-likelihood of the parameters:

ℓ 𝜇, Σ, 𝜙 = ∑ log 𝑝(𝑥 % , 𝑧 % ; 𝜇, Σ, 𝜙)
#

%=1

Without getting into the full details, it hopefully should not be too 
surprising that the solutions here are given by:

𝜙L =
∑ 𝟏 𝑧 % = 𝑧#

%=1
𝑚 , 𝜇 L =

∑ 𝟏 𝑧 % = 𝑧 𝑥 %#
%=1

∑ 𝟏 𝑧 % = 𝑧#
%=1

,

Σ L =
∑ 𝟏 𝑧 % = 𝑧 (𝑥 % −𝜇 L ) 𝑥 % − 𝜇 L 0#

%=1
∑ 𝟏 𝑧 % = 𝑧#

%=1
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Latent variables and expectation maximization

In the unsupervised setting, 𝑧 % terms will not be known, these are 
referred to as hidden or latent random variables

This means that to estimate the parameters, we can’t use the function 
1 𝑧 % = 𝑧 anymore

Expectation maximization (EM) algorithm (at a high level): replace 
indicators 1 𝑧 % = 𝑧 with probability estimates 𝑝 𝑧 % = 𝑧 𝑥 % ; 𝜇, Σ, 𝜙

When we re-estimate these parameter, probabilities change, so repeat:
E (expectation) step: compute 𝑝 𝑧 % = 𝑧 𝑥 % ; 𝜇, Σ, 𝜙 , ∀𝑖, 𝑧
M (maximization) step: re-estimate 𝜇, Σ, 𝜙
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EM for Gaussian mixture models

E step: using Bayes’ rule, compute probabilities
𝑝L̂

% ← 𝑝 𝑧 % = 𝑧 𝑥 % ; 𝜇, Σ, 𝜙

         =
𝑝 𝑥 % 𝑧 % = 𝑧; 𝜇, Σ 𝑝 𝑧 % = 𝑧; 𝜙

∑ 𝑝 𝑥 % 𝑧 % = 𝑧′; 𝜇, Σ 𝑝 𝑧 % = 𝑧′; 𝜙�
L′

         = 𝒩 𝑥 % ; 𝜇 L , Σ L 𝜙L
∑ 𝒩 𝑥 % ; 𝜇 L′ , Σ L′ 𝜙L′

�
L′

M step: re-estimate parameters using these probabilities

𝜙L ←
∑ 𝑝L̂

%#
%=1
𝑚 , 𝜇 L ←

∑ 𝑝L̂
% 𝑥 %#

%=1
∑ 𝑝%̂,L

#
%=1

,

Σ L ←
∑ 𝑝L̂

% (𝑥 % −𝜇 L ) 𝑥 % − 𝜇 L 0#
%=1

∑ 𝑝L̂
%#

%=1 19



Local optima

Like k-means, EM is effectively optimization a non-convex problem

Very real possibility of local optima (seemingly moreso than k-means, in 
practice)

Same heuristics work as for k-means (in fact, common to initialize EM 
with clusters from k-means)
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Illustration of EM algorithm
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Illustration of EM algorithm
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Illustration of EM algorithm
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Illustration of EM algorithm
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Illustration of EM algorithm
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Possibility of local optima
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Possibility of local optima
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Possibility of local optima
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Possibility of local optima
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EM and k-means

As you may have noticed, EM for mixture of Gaussians and k-means 
seem to be doing very similar things

Primary differences: EM is computing “distances” based upon the inverse 
covariance matrix, allows for “soft” assignments instead of hard 
assignments
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